Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 16
Number of page(s) 7
DOI https://doi.org/10.1051/epjpv/2024016
Published online 30 April 2024
  1. N. Stoddard et al., Casting single crystal silicon: novel defect profiles from BP solar's Mono2 TM Wafers, in Solid State Phenomena (Trans Tech Publications Ltd, 2008), Vol. 131, pp. 1–8. https://doi.org/10.4028/www.scientific.net/SSP.131-133.1 [Google Scholar]
  2. S. Riepe et al., Enhanced material quality in SMART mono-Si block cast ingots by introduction of functional defects, in Proceedings of the 36th EUPVSEC, Marseille (2019) [Google Scholar]
  3. L. Méndez, E. Forniés, D. Garrain, A.P. Vázquez, A. Souto, T. Vlasenko, Upgraded metallurgical grade silicon and polysilicon for solar electricity production: a comparative life cycle assessment, Sci. Total Environ. 789, 147969 (2021). https://doi.org/10.1016/j.scitotenv.2021.147969 [Google Scholar]
  4. E. Forniés, C. del Cañizo, L. Méndez, A. Souto, A.P. Vázquez, D. Garrain, UMG silicon for solar PV: from defects detection to PV module degradation, Sol. Energy 220, 354 (2021). https://doi.org/10.1016/j.solener.2021.03.076 [Google Scholar]
  5. R. Basnet et al., Impact of pre-fabrication treatments on n-type UMG wafers for 21% efficient silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells 205, 110287 (2020). https://doi.org/10.1016/j.solmat.2019.110287 [Google Scholar]
  6. C. Liu et al., Industrial TOPCon solar cells on n-type quasi-mono Si wafers with efficiencies above 23%, Sol. Energy Mater. Sol. Cells 215, 110690 (2020). https://doi.org/10.1016/j.solmat.2020.110690 [Google Scholar]
  7. T. Desrues et al., Ultra-thin Poly-Si/SiOx passivating contacts integration for high efficiency solar cells on n-type cast mono silicon wafers, AIP Conf. Proc. 2487, 020005 (2022). https://doi.org/10.1063/5.0089677 [Google Scholar]
  8. R. Basnet et al., 22.6% efficient solar cells with polysilicon passivating contacts on n-type solar-grade wafers, Sol. RRL, 3, 1900297 (2019). https://doi.org/10.1002/solr.201900297 [Google Scholar]
  9. Z. Yang et al., Impurity gettering in polycrystalline-silicon based passivating contacts—the role of oxide stoichiometry and pinholes, Adv. Energy Mater. 12, 2103773 (2022). https://doi.org/10.1002/aenm.202103773 [Google Scholar]
  10. A. Liu, D. Yan, S.P. Phang, A. Cuevas, D. Macdonald, Effective impurity gettering by phosphorus- and boron-diffused polysilicon passivating contacts for silicon solar cells, Sol. Energy Mater. Sol. Cells 179, 136 (2018). https://doi.org/10.1016/j.solmat.2017. 11.004 [Google Scholar]
  11. C. Ramírez-Márquez, M. Martín, Chapter 10 - Photovoltaic solar energy, in Sustainable Design for Renewable Processes, edited by M. Martín (Elsevier, 2022), pp. 397–439. https://doi.org/10.1016/B978-0-12-824324-4.00029-9 [Google Scholar]
  12. A. Soiland et al., Solar silicon from a metallurgical route by Elkem Solar − a viable alternative to virgin polysilicon, in 6th international workshop on crystalline silicon solar cells (CSSC6), Aix les Bains, France (2012) [Google Scholar]
  13. M. Trempa et al., Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots, J. Cryst. Growth 454, 6 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.037 [Google Scholar]
  14. T. Ervik, G. Stokkan, T. Buonassisi, Ø. Mjøs, O. Lohne, Dislocation formation in seeds for quasi-monocrystalline silicon for solar cells, Acta Mater. 67, 199 (2014). http://dx.doi.org/10.1016/j.actamat.2013.12.010 [Google Scholar]
  15. V. Amaral De Oliveira et al., Sub-grain boundaries sources and effects in large mono-like silicon ingots for pv, in 29th European Photovoltaic Solar Energy Conference and Exhibition (2014) [Google Scholar]
  16. S. Mack et al., Status and perspective of industrial TOPCon solar cell development at Fraunhofer ISE, in Proceedings of the 8th WCPEC, Milano, Italy (2022) [Google Scholar]
  17. H.C. Sio et al., The electrical properties of high performance multicrystalline silicon and mono-like silicon: material limitations and cell potential, Sol. Energy Mater. Sol. Cells 201, 110059 (2019). https://doi.org/10.1016/j.solmat.2019.110059 [Google Scholar]
  18. M.A. Green, Solar cells: operating principles, technology, and system applications (1986). https://api.semanticscholar.org/CorpusID:265785310 [Google Scholar]
  19. J. Greulich, M. Glatthaar, S. Rein, Fill factor analysis of solar cells' current-voltage curves, Prog. Photovolt.: Res. Appl. 18, 511 (2010). https://doi.org/10.1002/pip.979 [Google Scholar]
  20. R. Hoenig, M. Glatthaar, F. Clement, J. Greulich, J. Wilde, D. Biro, New measurement method for the investigation of space charge region recombination losses induced by the metallization of silicon solar cells, Energy Procedia 8, 694 (2011). https://doi.org/10.1016/j.egypro.2011.06.203 [Google Scholar]
  21. S.M. Sze, Device semiconductors: physics and technology, 2nd edn. (Wiley and Sons, 2002) [Google Scholar]
  22. K. Potje-Kamloth, Chapter 11 - Conducting polymer-based schottky barrier and heterojunction diodes and their sensor application, in Handbook of Surfaces and Interfaces of Materials, edited by H.S. Nalwa (Academic Press Burlington, 2001), pp. 445–494. https://doi.org/10.1016/B978-012513910-6/50068-2 [Google Scholar]
  23. O. Breitenstein, J.P. Rakotoniaina, M.H. Al Rifai, M. Werner, Shunt types in crystalline silicon solar cells, Prog. Photovolt.: Res. Appl. 12, 529 (2004). https://doi.org/10.1002/pip.544 [Google Scholar]
  24. A. Liu et al., Direct observation of the impurity gettering layers in polysilicon-based passivating contacts for silicon solar cells, ACS Appl. Energy Mater. 1, 2275 (2018). https://doi.org/10.1021/acsaem.8b00367 [Google Scholar]
  25. H. Park et al., Effect of the phosphorus gettering on Si heterojunction solar cells, Int. J. Photoenergy 2012, 794876 (2012). https://doi.org/10.1155/2012/794876 [Google Scholar]
  26. R. van der Vossen, F. Feldmann, A. Moldovan, M. Hermle, Comparative study of differently grown tunnel oxides for p-type passivating contacts, Energy Procedia 124, 448 (2017). https://doi.org/10.1016/j.egypro.2017.09.273 [Google Scholar]
  27. B. Nemeth et al., Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells, J. Mater. Res. 31, 671 (2016). https://doi.org/10.1557/jmr.2016.77 [Google Scholar]
  28. Z. Yang et al., Charge-carrier dynamics for silicon oxide tunneling junctions mediated by local pinholes, Cell Rep. Phys. Sci. 2, 100667 (2021). https://doi.org/10.1016/j.xcrp.2021.100667 [Google Scholar]
  29. F. Feldmann et al., Large area TOPCon cells realized by a PECVD tube process, in 36th European PV Solar Energy Conference and Exhibition, 9-13 September 2019, Marseille, France (2019). https://doi.org/10.4229/EUPVSEC20192019-2EO.1.4 [Google Scholar]
  30. K. Lancaster, S. Großer, F. Feldmann, V. Naumann, C. Hagendorf, Study of pinhole conductivity at passivated carrier-selected contacts of silicon solar cells, Energy Procedia 92, 116 (2016). https://doi.org/10.1016/j.egypro.2016.07.040 [Google Scholar]
  31. F. Feldmann, M. Nicolai, R. Müller, C. Reichel, M. Hermle, Optical and electrical characterization of poly-Si/SiOx contacts and their implications on solar cell design, Energy Procedia 124, 31 (2017). https://doi.org/10.1016/j.egypro.2017.09.336 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.