Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 15
Number of page(s) 19
DOI https://doi.org/10.1051/epjpv/2024009
Published online 30 April 2024
  1. P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley (eds.), IPCC 2022 summary for policymakers, in Climate Change 2022: Mitigation of Climate Change, Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022. https://doi.org/10.1017/9781009157926 [Google Scholar]
  2. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Eickemeier, P. Matschoss, G. Hansen, S. Kadner, S. Schlömer, T. Zwickel, C. Von Stechow, IPCC, 2011 summary for policymakers, in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011. https://doi.org/10.5860/CHOICE.49-6309 [Google Scholar]
  3. E.A. Soto, L.B. Bosman, E. Wollega, W.D. Leon-Salas, Analysis of grid disturbances caused by massive integration of utility level solar power systems, Eng 3, 236 (2022) [Google Scholar]
  4. REN21, Renewables 2021 Global Status Report, 2021 [Google Scholar]
  5. A. Ryu, H. Ishii, Y. Hayashi, Battery smoothing control for photovoltaic system using short-term forecast with total sky images, Electric Power Syst. Res. 190, 106645 (2021) [Google Scholar]
  6. P. Denholm, R. Margolis, Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California, Technical Report, 2016 [Google Scholar]
  7. A. Makibar, L. Narvarte, E. Lorenzo, Contributions to the size reduction of a battery used for PV power ramp rate control, Solar Energy 230, 435 (2021) [Google Scholar]
  8. R. Samu, M. Calais, G.M. Shafiullah, M. Moghbel, M.A. Shoeb, B. Nouri, N. Blum, Applications for solar irradiance nowcasting in the control of microgrids: a review, Renewable Sustainable Energy Rev. 147, 111187 (2021) [Google Scholar]
  9. E. Cirés, J. Marcos, I. de la Parra, M. García, L. Marroyo, The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions, Energy 188, 116053 (2019) [Google Scholar]
  10. X. Chen, Y. Du, E. Lim, H. Wen, L. Jiang, Sensor network based PV power nowcasting with spatio-temporal preselection for grid-friendly control, Appl. Energy 255, 113760 (2019) [Google Scholar]
  11. B. Elsinga, W.G.J.H.M. van Sark, Short-term peer-to-peer solar forecasting in a network of photovoltaic systems, Appl. Energy 206, 1464 (2017) [Google Scholar]
  12. M. Saleh, L. Meek, M.A.S. Masoum, M. Abshar, Battery-less short-term smoothing of photovoltaic generation using sky camera, IEEE Trans. Ind. Informatics 14, 403 (2018) [Google Scholar]
  13. Q. Paletta, G. Arbod, J. Lasenby, Benchmarking of deep learning irradiance forecasting models from sky images − an in-depth analysis, Solar Energy 224, 855 (2021) [Google Scholar]
  14. H. Wen, Y. Du, X. Chen, E. Lim, H. Wen, L. Jiang, W. Xiang, Deep learning based multistep solar forecasting for PV ramp-rate control using sky images, IEEE Trans. Ind. Informatics 17, 1397 (2021) [Google Scholar]
  15. X. Chen, Y. Du, E.G. Lim, L. Fang, K. Yan, Towards the applicability of solar nowcasting: a practice on predictive PV power ramp-rate control, Renewable Energy 195, 147 (2022) [Google Scholar]
  16. Z. Liu, Y. Du, Evolution towards dispatchable PV using forecasting, storage, and curtailment: a review Electric Power Syst Res. 223, 109554 (2023) [Google Scholar]
  17. N. Blum, S. Wilbert, B. Nouri, J. Stührenberg, J.E. Lezaca Galeano, T. Schmidt, D. Heinemann, V. Thomas, A. Kazantzidis, R. Pitz-Paal, Analyzing spatial variations of cloud attenuation by a network of all-sky imagers, Remote Sens. 14, 5685 (2022) [Google Scholar]
  18. N.B. Blum, S. Wilbert, B. Nouri, J. Lezaca, D. Huckebrink, A. Kazantzidis, D. Heinemann, L.F. Zarzalejo, M.J. Jiménez, R. Pitz-Paal, Measurement of diffuse and plane of array irradiance by a combination of a pyranometer and an all-sky imager, Solar Energy 232, 232 (2022) [Google Scholar]
  19. M. Schroedter-Homscheidt, M. Kosmale, S. Jung, J. Kleissl, Classifying ground-measured 1 minute temporal variability within hourly intervals for direct normal irradiances, Meteorol. Zeitsch. 27, 161 (2018) [Google Scholar]
  20. B. Nouri, S. Wilbert, L. Segura, P. Kuhn, N. Hanrieder, A. Kazantzidis, T. Schmidt, L. Zarzalejo, P. Blanc, R. Pitz-Paal, Determination of cloud transmittance for all sky imager based solar nowcasting, Solar Energy 181, 251 (2019) [Google Scholar]
  21. B. Nouri, S. Wilbert, N. Blum, Yann Fabel, E. Lorenz, A. Hammer, T. Schmidt, L. Zarzalejo, R. Pitz-Paal, Probabilistic solar nowcasting based on all-sky imagers, Solar Energy 253, 285 (2023) [Google Scholar]
  22. B. Nouri, S. Wilbert, P.M. Kuhn, N. Hanrieder, M. Schroedter-Homscheidt, A. Kazantzidis, L.F. Zarzalejo, P. Blanc, S. Kumar, N. Goswami, R. Shankar, R. Shankar, R. Affolter, R. Pitz-Paal, Real-time uncertainty specification of all sky imager derived irradiance nowcasts, Remote Sensing 11, 1059 (2019) [Google Scholar]
  23. M. Loevenich, L. Kaborn, DLR Internal documentation, YACOP, 2020 [Google Scholar]
  24. T. Hirsch, J. Dersch, T. Fluri, J. Garcia-Barberena, S. Giuliano, F. Hustig-Diethlem, R. Meyer, N. Schmidt, M. Seitz, E. Yildiz, SolarPACES guideline for bankable STE yield assessment, IEA-SolarPACES, 2017 [Google Scholar]
  25. W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: a python package for modeling solar energy systems, J. Open Source Softw. 3, 884 (2018) [Google Scholar]
  26. W. Holmgren, Calama-Consulting, C. Hansen, K. Anderson, M. Mikofski, A. Lorenzo, U. Krien, bmu, C. Stark, DaCoEx, A. Driesse, A.R. Jensen, M. Sánchez de León Peque, konstantt, mayudong, Heliolytics, Ed Miller, M.A. Anoma, V. Guo, L. Boeman, J. Stein, W. Vining, jforbess, T. Lunel, A. Morgan, J. Ranalli, C. Leroy, A.M.R.,J. PalakapillyKWH, J. Dollinger, pvlib/pvlib-python: v 0.9.0 (2021). https://doi.org/10.5281/ZENODO.5366883 [Google Scholar]
  27. J.S. Stein, The Photovoltaic Performance Modeling Collaborative (PVPMC) (2012). https://doi.org/10.1109/PVSC.2012.6318225 [Google Scholar]
  28. J.J. Michalsky, The Astronomical Almanac's algorithm for approximate solar position (1950−2050), Solar Energy 40, 227 (1988) [Google Scholar]
  29. B. Nouri, N. Blum, S. Wilbert, L.F. Zarzalejo, A hybrid solar irradiance nowcasting approach: combining all sky imager systems and persistence irradiance models for increased accuracy, Solar RRL 6, 2100442 (2022) [Google Scholar]
  30. D.L. King, W.E. Boyson, J.A. Kratochvil, Photovoltaic array performance model, Sandia Report No. 2004–3535, 8, 2004 [Google Scholar]
  31. N. Blum, Nowcasting of solar irradiance and photovoltaic production using a network of all-sky imagers, PhD thesis, RWTH Aachen, 2022 [Google Scholar]
  32. W. De Soto, S.A. Klein, W.A. Beckman, Improvement and validation of a model for photovoltaic array performance, Solar Energy 80, 78 (2006) [Google Scholar]
  33. A.P. Dobos, P.V. Watts, Version 5 Manual (NREL/TP-6A20- 6264 1), National Renewable Energy Laboratory (NREL), 2014 [Google Scholar]
  34. J. Marcos, O. Storkël, L. Marroyo, M. Garcia, E. Lorenzo, Storage requirements for PV power ramp-rate control, Solar Energy 99, 28 (2014) [Google Scholar]
  35. A. Sangwongwanich, Y. Yang, F. Blaabjerg, A cost-effective power ramp-rate control strategy for single-phase two-stage grid-connected photovoltaic systems, Institute of Electrical and Electronics Engineers Inc., 2016 [Google Scholar]
  36. PREPA, Puerto Rico Electric Power Authority minimum technical requirements for photovoltaic (PV) generation projects, 2012 [Google Scholar]
  37. X. Li, D. Hui, X. Lai, Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations, IEEE Trans. Sustainable Energy 4, 464 (2013) [Google Scholar]
  38. L. Höpken, Reducing the Impact of Irradiance Ramps on PV Power Production − A Techno-Economic Analysis of Nowcasting. Master's thesis, RWTH Aachen, 2023 [Google Scholar]
  39. V. Ramasamy, J. Zuboy, E. O'Shaughnessy, D. Feldman, J. Desai, M. Woodhouse, P. Basore, R. Margolis, U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022, 2022. https://doi.org/10.2172/1891204 [Google Scholar]
  40. C. Kost, Stromgestehungskosten Erneuerbarer Energien, Fraunhofer-Institut für Solare Energiesysteme ISE, 2021 [Google Scholar]
  41. Renewable Power Generation Costs in 2021, International Renewable Energy Agency (IRENA), Abu Dhabi [Google Scholar]
  42. National Renewable Energy Laboratory (NREL), Annual Technology Baseline: Utility-Scale PV, Accessed: 21/08/ 2023. https://atb.nrel.gov/electricity/2022/utility-scale_pv [Google Scholar]
  43. US Dollar (USD) to Euro (EUR) exchange rate history, Accessed: 25/08/2023.https://www.exchangerates.org.uk/USD-EUR-exchange-rate-history.html [Google Scholar]
  44. S.N. Motapon, E. Lachance, L.A. Dessaint, K. Al-Haddad, A generic cycle life model for lithium-ion batteries based on fatigue theory and equivalent cycle counting, IEEE Open J. Ind. Electron. Soc. 1, 207 (2020) [Google Scholar]
  45. C.S. Lai, Y. Jia, Y. Jia, W. Jia, Z. Xu, L. Lai, X. Li, X. Li, J. Cao, J. Cao, M. McCulloch, Levelized cost of electricity for photovoltaic/biogas power plant hybrid system with electrical energy storage degradation costs, Energy Convers. Manag. 153, 34–47 (2017) [Google Scholar]
  46. C. Augustine, N. Blair, Storage Futures Study: Storage Technology Modeling Input Data Report, 2021 [Google Scholar]
  47. National Renewable Energy Laboratory (NREL), Annual Technology Baseline: Commercial Battery Storage, Accessed: 21/08/2023 https://atb.nrel.gov/electricity/2022/utility-scale_battery_storage [Google Scholar]
  48. National Renewable Energy Laboratory (NREL), Annual Technology Baseline: Utility-Scale Battery Storage, Accessed: 21/08/2023 https://atb.nrel.gov/electricity/2022/commercial_battery_storage [Google Scholar]
  49. European Commission and Directorate-General for Energy and O. Hoogland, V. Fluri, C. Kost, M. Klobasa, M. Kühnbach, M. Khanra, M. Antretter, J. Koornneef, H. Weijde, A. Satish, E. Battistutta, K. Veum, J. Gorenstein Dedecca, A. Doorman, L. Van Nuffel, B. Breitschopf, A. Herbst, O. Cerny, Study on energy storage, Publications Office of the European Union, 2023, https://doi.org/10.2833/333409 [Google Scholar]
  50. Eurostat, Labour cost levels by NACE Rev. 2 activity, Accessed: 21/08/2023 https://ec.europa.eu/eurostat/databrowser/view/lc_lci_lev/default/table?lang=en [Google Scholar]
  51. W. Gerke, M. Bank, Finanzierung: Grundlagen für Investitions- und Finanzierungs-entscheidungen im Unternehmen (W. Kohlhammer Verlag, 2016) [Google Scholar]
  52. IRENA, The cost of financing for renewable power (International Renewable Energy Agency (IRENA), Abu Dhabi, 2023). https://www.irena.org/Publications/2023/May/The-cost-of-financing-for-re-newable-power [Google Scholar]
  53. National Electricity Rules. 2023. https://energy-rules.aemc.gov.au/ner/440 [Google Scholar]
  54. National Electricity Amendment (Generator Technical Performance Standards Rule 2018). 2018. https://www.aemc.gov.au/rule-changes/generator-technical-performance-standards. [Google Scholar]
  55. Technical Rules. 2016. https://www.westernpower.com.au/siteassets/documents/documents-and-policies/technical-rules-20161201.pdf. [Google Scholar]
  56. Horizon Power Technical Rules Standard Number: HPC-9DJ-01-0001-2012. 2022. https://web.horizonpower.com.au/media/1287/hpc-9dj-01-0001-2012-horizon-power-technical-rules-nwis-nis-100820.pdf [Google Scholar]
  57. Low Voltage EG Connection Technical Requirements Standard Number:HPC-9DJ-13-0002-2019. 2021. https://web.horizonpower.com.au/media/5183/low-voltage-eg-connection-technical-requirements.pdf [Google Scholar]
  58. J. Atherton, Rahul Sharma, J. Salgado. Techno-economic analysis of energy storage systems for application in wind farms, Energy 135, 540 (2017) [Google Scholar]
  59. Regulation FCAS Contribution Factor Procedure. 2023. https://aemo.com.au/-/media/files/electricity/nem/security_and_reliability/ancillary_services/regulation-fcas-contribution-factors-procedure-final.pdf?la=en [Google Scholar]
  60. GB/T 19964-2012 Technical requirements for connecting photovoltaic power station to power system. 2012 [Google Scholar]
  61. Technical regulation 3.2.2 for PV power plants above 11 kW. 2016. https://en.energinet.dk/media/evsijtqt/technical-regulation-3_2_2-for-pv-power-plants-above-11-kw.pdf [Google Scholar]
  62. B. Khan, A. Anvari-Moghaddam, J.M. Guerrero, S.K. Chaudhary, J.C. Vasquez, K.H.B. Frederiksen, Y. Wu, A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia, Energies 15, 5197 (2022). https://doi.org/10.3390/en15145197 [Google Scholar]
  63. Technische Anschlussregel Mittelspannung (VDE-AR-N 4110). 2018. https://www.vde-verlag.de/normen/0100495/vde-ar-n-4110-anwendungsregel-2018-11.html [Google Scholar]
  64. Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz- EEG 2023) §9 Technische Vorgaben. Accessed: 24/08/2023.https://www.gesetze-im-internet.de/eeg_2014/__9.html [Google Scholar]
  65. V. Gevorgian, S. Booth, Review of PREPA Technical Requirements for Inter connecting Wind and Solar Generation (2013). https://doi.org/10.2172/1260328 [Google Scholar]
  66. Central Electricity Authority Notification No.12/X/STD(CONN)/GM/CEA/2018. 2019. https://cea.nic.in/wp-content/uploads/2020/02/notified_regulations.pdf [Google Scholar]
  67. EirGrid Grid Code Version 11. 2022. https://www.eirgridgroup.com/site-files/library/EirGrid/GridCode.pdf [Google Scholar]
  68. R. Khan, Y. Go, Ii Go Y., Assessment of Malaysia’s Large-Scale Solar Projects: Power System Analysis for Solar PV Grid Integration, in:Global Challenges (2020), p. 1900060. https://doi.org/10.1002/gch2.201900060 [Google Scholar]
  69. Guidelines On Large Scale Solar Photovoltaic Plant For Connection To Electricity Net works [Electricity Supply Act (Amendment) 2015 (Act A1501)]. 2018. https://www.st.gov.my/contents/2019/LSS/Guideline%20on%20LSSPV%20for%20Connection%20to%20Electricity%20Networks_%20February%202019.PDF [Google Scholar]
  70. Minimum Technical Requirements for Interconnection of Photovoltaic (PV) Facilities 2012. https://www.esig.energy/wiki-main- page/puerto-rico-electric-power-authority-s-minimum-technical-renewables-interconnection-requirements/#Minimum_Technical_Requirements_of_Interconnection_of_PV_Facilities_.28ver.June_14.2C_2012.29. [Google Scholar]
  71. A. Makibar, A. Makibar, L. Narvarte, E. Lorenzo, On the relation between battery size and PV power ramp rate limitation, Solar Energy 142, 182 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.