Issue |
EPJ Photovolt.
Volume 16, 2025
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/epjpv/2025011 | |
Published online | 27 May 2025 |
- P. Hacke, S. Lokanath, P. Williams, A. Vasan, P. Sochor, G. TamizhMani, H. Shinohara, S. Kurtz, A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols, Renew. Sustain. Energy Rev. 82 1097 (2018). https://doi.org/10.1016/j.rser.2017.07.043 [CrossRef] [Google Scholar]
- A. Golnas, PV system reliability: An operator's perspective, IEEE J. Photovolt. 3, 1 (2013). https://doi.org/10.1109/JPHOTOV.2012.2215015 [Google Scholar]
- J.M. Freeman, G.T. Klise, A. Walker, O. Lavrova, Evaluating energy impacts and costs from PV component failures, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (2018). https://doi.org/10.1109/PVSC.2018. 8547454 [Google Scholar]
- VDMA, International Technology Roadmap for Photovoltaic (ITRPV) − 2022 Results, 14th edn. (2023) [Google Scholar]
- J. Falck, C. Felgemacher, A. Rojko, M. Liserre, P. Zacharias, Reliability of power electronics systems: An industry perspective, IEEE Ind. Electron. Mag. 12, 24 (2018). https://doi.org/10.1109/MIE.2018.2825481. [Google Scholar]
- M. Shahzad, K.V.S. Bharath, M.A. Khan, A. Haque, Review on reliability of power electronic components in photovoltaic inverters, in 2019 International Conference on Power Electronics, Control and Automation (ICPECA) (2020). https://doi.org/10.1109/ICPECA47973.2019.8975585 [Google Scholar]
- A. Sangwongwanich, Y. Yang, D. Sera, F. Blaabjerg, Mission profile-oriented control for reliability and lifetime of photovoltaic inverters, IEEE Trans. Ind. Appl. 56, 1 (2020). https://doi.org/10.1109/TIA.2019.2947227 [Google Scholar]
- SolarPower Europe, Global Market Outlook for Solar Power 2024–2028 (SolarPower Europe, 2024) [Google Scholar]
- J. Leloux, Mapping the Relevance of Digitalisation for Photovoltaics, in Intersolar Conference (2024) [Google Scholar]
- SolarPower Europe, Operation & Maintenance: Best Practice Guidelines, Version 5.0 (2021) [Google Scholar]
- IEA-PVPS, Guidelines for Operation and Maintenance of Photovoltaic Power Plants in Different Climate Zones, Report IEA-PVPS T13-25:2022 (2022) [Google Scholar]
- A. Livera, M. Theristis, L. Micheli, E.F. Fernández, J.S. Stein, G.E. Georghiou, Operation and maintenance decision support system for photovoltaic systems, IEEE Access 10, 42481 (2022). https://doi.org/10.1109/ACCESS.2022.3168140 [CrossRef] [Google Scholar]
- D. Daßler, S. Malik, S.B. Kuppanna, B. Jäckel, M. Ebert, Innovative approach for yield evaluation of PV systems utilising machine learning methods, in 46th IEEE PVSC (Chicago, 2019). https://doi.org/10.1109/PVSC40753.2019.8981367 [Google Scholar]
- D. Daßler, S.B. Kuppanna, S. Malik, R. Schmidt, M. Ebert, Training and evaluation for yield-driven detection of losses in PV systems utilising artificial neural networks, in IEEE 47th Photovoltaic Specialists Conf. (PVSC) (Virtual, 2020) https://doi.org/10.1109/PVSC45281.2020.9300490 [Google Scholar]
- G.D. Rupakula, D. Daßler, S. Malik, M. Ebert, R. Schmidt, Automatic fault detection and classification in PV systems by the application of machine learning algorithms, in 38th Eur. Photovolt. Sol. Energy Conf. and Exhibition (2021). https://doi.org/10.4229/EUPVSEC20212021-5DO.1.2 [Google Scholar]
- D. Daßler, S. Malik, R. Gottschalg, M. Ebert, Effect of availability and quality of data on the detection of defects utilising artificial neural networks in PV system monitoring data, in 8th World Conf. on Photovolt. Energy Conv. (Milan, 2022). https://doi.org/10.4229/WCPEC-82022-4DO.1.5 [Google Scholar]
- Deutscher Wetterdienst, CDC (Climate Data Center), accessed 17 May 2024. https://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html [Google Scholar]
- S. Malik, D. Daßler, J. Fröbel, J. Schneider, M. Ebert, Outdoor data evaluation of half-/full-cell modules with regard to measurement uncertainties and the application of statistical methods, in 29th Eur. Photovolt. Sol. Energy Conf. and Exhibition (Amsterdam, 2014) [Google Scholar]
- M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, ACM SIGMOD Rec. 28, 49 (1999) [CrossRef] [Google Scholar]
- E. Schubert, M. Gertz, Improving the cluster structure extracted from OPTICS plots, in Proc. Conf. “Lernen, Wissen, Daten, Analysen” (LWDA, 2018) pp. 318–329 [Google Scholar]
- F. Pedregosa et al., Scikit-learn: Machine learning in Python, J. Mach. Learn Res. 12, 2825 (2011) [Google Scholar]
- Reprint of: P.C. Mahalanobis, On the generalised distance in statistics (Sankhya A 80, Suppl. 1, 2018) pp. 1–7. https://doi.org/10.1007/s13171-019-00164-5 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.