Issue |
EPJ Photovolt.
Volume 16, 2025
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/epjpv/2025013 | |
Published online | 20 May 2025 |
- SolarPower Europe, Operation & Maintenance: Best practice guidelines Version 5.0 (SolarPower Europe, 2021) [Google Scholar]
- A.K. Vidal de Oliveira, M. Aghaei, R. Rüther, Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants, Sol. Energy 211, 712 (2020) [CrossRef] [Google Scholar]
- D. Manno, G. Cipriani, G. Giulla et al., Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images, Energy Convers. Manag. 241, 114315 (2021) [CrossRef] [Google Scholar]
- A.H. Herraiz, A.P. Marugan, F.P. Garcia Marquez, Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure, Renew. Energy 153, 334 (2020) [CrossRef] [Google Scholar]
- A.W. Kandeal, M.R. Elkadeem, A.K. Thakur et al., Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances, Sol. Energy 223, 33 (2021) [CrossRef] [Google Scholar]
- A. Di Tommaso, A. Betti, G. Fontanelli et al., A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle, Renew. Energy 193, 941 (2022) [CrossRef] [Google Scholar]
- J.A. Tsanakas, L.-D. Ha, F. Al Shakarchi, Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery, Renew. Energy 102, 224 (2017) [CrossRef] [Google Scholar]
- D.-L. Ha, J.A. Tsanakas, Patent No. WO2016189052/A1 (International), FR3036900 (France), CEA [Google Scholar]
- U. Jahn, M. Herz, M. Köntges et al., Report IEA-PVPS T13-10: 2018 [Google Scholar]
- J.A. Tsanakas, G. Vannier, A. Plissonnier et al., Fault diagnosis and classification of large-scale photovoltaic plants through aerial orthophoto thermal mapping, in Proc. 31st Eur. Photovolt. Sol. Energy Conf. (EU PVSEC) (Hamburg, Germany, 2015) [Google Scholar]
- SERENDI-PV (Smooth, reliable and dispatchable integration of PV in EU grids) (accessed April 19, 2025). https://serendipv.eu/ [Google Scholar]
- Logiciel (Software) “ASPIRE” ©CEA, licensing/registration No: IDDN.FR.001.140011.000.S.P.2020.000.30000 [Google Scholar]
- Figure available under Creative Commons Attribution 4.0 International licence [Google Scholar]
- A. Ammar, A. Koubaa, M. Ahmed et al., Vehicle detection from aerial images using deep learning: A comparative study, Electronics 10, 820 (2021) [CrossRef] [Google Scholar]
- T.-Y. Lin, P. Dollár, R. Girshick et al., Feature pyramid networks for object detection, in Proc. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) (Honolulu, HI, USA, 2017), pp. 936–944 [Google Scholar]
- E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39, 640 (2017). https://doi.org/10.1109/TPAMI.2016.2572683 [CrossRef] [Google Scholar]
- L. Bommes, T. Pickel, C. Buerhop-Lutz et al., Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos, Prog. Photovolt. Res. Appl. 29, 1236 (2021) [CrossRef] [Google Scholar]
- J.A. Tsanakas, D.-L. Ha, C. Buerhop, Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges, Renew. Sustain. Energy Rev. 62, 695 (2016) [CrossRef] [Google Scholar]
- M. Mattei, G. Notton, C. Cristofari et al., Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renew. Energy 31, 553 (2006) [CrossRef] [Google Scholar]
- M. Köntges, S. Kurtz et al., Report IEA-PVPS T13-01: 2014 [Google Scholar]
- S. Vitale, J. Leloux, H. Colin et al., Shaping European collaboration on photovoltaics: A collaborative platform for simulation and monitoring (COPLASIMON), in Proc. EU PVSEC 2024 (Vienna, Austria, 2024) [Google Scholar]
- Collaborative Platform for Simulation and Monitoring (COPLASIMON) (accessed April 19, 2025). https://coplasimon.eu/index.php/the-cea-aspire-software/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.