EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 14
Number of page(s) 20
Published online 25 April 2024
  1. IEA, Tracking clean energy progress 2023 (International Energy Agency (IEA, 2023) [Google Scholar]
  2. S. Weckend, A. Wade, G.A. Heath, End of life management: solar photovoltaic panels (National Renewable Energy Lab (NREL), Golden, CO (United States), 2016) [Google Scholar]
  3. V. Goodship, A. Stevels, J. Huisman (Eds.), Waste electrical and electronic equipment (WEEE) handbook (Woodhead Publishing, 2019) [Google Scholar]
  4. ISO 1404 0, Environmental management: life cycle assessment; principles and framework (International Organization for Standardization, 2006) [Google Scholar]
  5. ISO 1404 4, Environmental management: life cycle assessment; requirements and guidelines (International Organization for Standardization, 2006) [Google Scholar]
  6. L.C. Stages, Life cycle greenhouse gas emissions from solar photovoltaics, J. Ind. Ecol. 16, S122 (2012) [Google Scholar]
  7. F. Asdrubali et al., Life cycle assessment of electricity production from renewable energies: review and results harmonization, Renew. Sustain. Energy Rev. 42, 1113 (2015) [Google Scholar]
  8. R. Turconi, A. Boldrin, T. Astrup, Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations, Renew. Sustain. Energy Rev. 28, 555 (2013) [Google Scholar]
  9. C. Salas-Redondo, C.F. Blanco, L. Oberbeck, LCA of perovskite on Si tandem PV modules at industrial scale, in 37th European PV Solar Energy Conference and Exhibition, 2020, pp. 754–764 [Google Scholar]
  10. X. Tian, S.D. Stranks, F. You, Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells, Sci. Adv. 6, eabb0055 (2020) [Google Scholar]
  11. A.E. Björklund, Survey of approaches to improve reliability in LCA, Int. J. Life Cycle Assess. 7, 64 (2002) [Google Scholar]
  12. T. Ekvall, G.S. Albertsson, K. Jelse, Modeling recycling in life cycle assessment (Swedish Life Cycle Center, 2020) [Google Scholar]
  13. ISO 1406 7, Greenhouse gases: carbon footprint of products: requirements and guidelines for quantification (ISO, 2018) [Google Scholar]
  14. R. Frischknecht, P. Stolz, G. Heath, Methodology guidelines on life cycle assessment of photovoltaic (International Energy Agency (IEA) PVPS Task 12, 2020) [Google Scholar]
  15. JRC, Product environmental footprint category rules guidance (European Commission's Joint Research Centre (JRC), 2018) [Google Scholar]
  16. L. Zampori, R. Pant, Suggestions for updating the Product Environmental Footprint (PEF) method (Publications Office of the European Union: Luxembourg, 2019) [Google Scholar]
  17. GHG Protocol, Product life cycle accounting and reporting standard (World Business Council for Sustainable Development and World Resource Institute, 2011) [Google Scholar]
  18. BSI, The guide to PAS 2050 2011—How to carbon footprint your products, identify hotspots and reduce emissions in your supply chain (British Standards Institution, 2011) [Google Scholar]
  19. G. Yang et al., Recycling silicon bottom cells from end-of-life perovskite-silicon tandem solar cells, ACS Energy Lett. 8, 1639 (2023) [Google Scholar]
  20. EPRI, Advances in photovoltaic module recycling: life cycle inventory assessment for six recycling facilities (2023) [Google Scholar]
  21. B. Chen, C. Fei, J. Huang, Recycling lead and transparent conductors from perovskite solar modules, Nat. Commun. 12, 5859 (2021) [Google Scholar]
  22. K. Wang, T. Ye, S. Priya, “One-key-reset” recycling of whole perovskite solar cell, Matter 4, 2522 (2021) [Google Scholar]
  23. P. Stolz, R. Frischknecht, G. Heath, Life cycle assessment of current photovoltaic module recycling. IEA PVPS Task 12, International Energy Agency Power Systems Programme, Report IEA-PVPS T12-13:2018, (2017) [Google Scholar]
  24. R. Frischknecht, K. Komoto, T. Doi, Life cycle assessment of crystalline silicon photovoltaic module delamination with hot knife technology. IEA PVPS Task 12, International Energy Agency Power Systems Programme, Report IEA-PVPS T12, Report IEA-PVPS T12-25:2023, (2023) [Google Scholar]
  25. J. Ko, K. Kim, Y. Kang, Review on separation processes of end-of-life silicon photovoltaic modules, Energies 16, 4327 (2023) [Google Scholar]
  26. G. Harald, R.H. Michael, Physical delamination of PV-modules in less than one second, in 33th European PV Solar Energy Conference and Exhibition, 2020, pp. 1886–1889 [Google Scholar]
  27. L.S.S. de Oliveira et al., Silver recovery from end-of-life photovoltaic panels, Detritus 10, 62 (2020) [Google Scholar]
  28. M. Tao et al., Major challenges and opportunities in silicon solar module recycling, Prog. Photovolt.: Res. Appl. 28, 1077 (2020) [Google Scholar]
  29. C. Salas-Redondo, C.F. Blanco, L. Oberbeck, GW-scale perovskite/Si tandem PV systems with minimized environmental impacts (submitted), 2024 [Google Scholar]
  30. M. Hull et al., Prospective techno‐economic analysis of 4T and 2T perovskite on silicon tandem photovoltaic modules at GW‐scale production, Sol. RRL 7, 2300503 [Google Scholar]
  31. R. Frischknecht et al., Life cycle inventories and life cycle assessment of photovoltaic systems (International Energy Agency (IEA) PVPS Task, 12, 2020) [Google Scholar]
  32. E. Moreno-Ruiz et al., Documentation of changes implemented in ecoinvent database v3.6. ecoinvent association (Zürich, Switzerland, 2019), Available at: [Google Scholar]
  33. J.A. Alberola-Borràs et al., Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process, IScience 9, 542 (2018) [Google Scholar]
  34. J.A. Alberola-Borràs, R. Vidal, I. Mora-Sero, Evaluation of multiple cation/anion perovskite solar cells through life cycle assessment, Sustain. Energy Fuels 2, 1600 (2018) [Google Scholar]
  35. J.A. Alberola-Borràs, I. Mora-Seró, Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment, Sol. Energy Mater. Sol. Cells 179, 169 (2018) [Google Scholar]
  36. VDMA, 12th international technology roadmap for photovoltaic (VDMA Photovoltaic Equipment, 2021) [Google Scholar]
  37. A. Louwen et al., Life‐cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs, Prog. Photovolt.: Res. Appl. 23, 1406 (2015) [Google Scholar]
  38. H.H. Fan, Life cycle assessment of an innovative recycling treatment for crystalline silicon photovoltaic modules-the environmental impacts and benefits, Master's thesis, Universitat Politècnica de Catalunya, 2021 [Google Scholar]
  39. G. Htilebacker, Environmental product declaration (2014) [Google Scholar]
  40. J.B. Guinée, R. Heijungs, G. Huppes, Economic allocation: examples and derived decision tree, Int. J. Life Cycle Assess. 9, 23 (2004) [Google Scholar]
  41. K. Christiansen, L. Hoffman, G. Finnveden, Nordic guidelines on life-cycle assessment (Nordic Council of Ministers, 1995) [Google Scholar]
  42. D. Polverini et al., Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive, Sol. Energy 257, 1 (2023) [Google Scholar]
  43. A.C. Farrapo, Jr., T.T. Matheus, D.A. Lopes Silva, The application of circular footprint formula in bioenergy/bioeconomy: challenges, case study, and comparison with life cycle assessment allocation methods, Sustainability 15, 2339 (2023) [Google Scholar]
  44. M. Monteiro Lunardi, A. Wing Yi Ho‐Baillie, R. Corkish, A life cycle assessment of perovskite/silicon tandem solar cells, Prog. Photovolt.: Res. Appl. 25, 679 (2017) [Google Scholar]
  45. CEN, Sustainability of construction works − environmental product declarations − core rules for the product category of construction products (EN 1580 4: 2012+A2) (European Committee for Standardization, Brussels, Belgium, 2019) [Google Scholar]
  46. Y. Luo, U.S. Patent Application No. 17/595, 811, 2022 [Google Scholar]
  47. D. Sah et al., Extraction and analysis of recovered silver and silicon from laboratory grade waste solar cells, Silicon 14, 9635 (2022) [Google Scholar]
  48. Z. Zhang et al., Optimization of indium recovery from waste crystalline silicon heterojunction solar cells by acid leaching, Sol. Energy Mater. Sol. Cells 230, 111218 (2021) [Google Scholar]
  49. Y. Yu et al., Review of silicon recovery in the photovoltaic industry, Curr. Opin. Green Sustain. Chem. 44, 100870 (2023) [Google Scholar]
  50. Y. Sim, Y.B. Tay, X. Lin, N. Mathews, Simplified silicon recovery from photovoltaic waste enables high performance, sustainable lithium-ion batteries, Sol. Energy Mater. Sol. Cells 257, 112394 (2023) [Google Scholar]
  51. M. Held, Life cycle assessment of CdTe module recycling, in 24th European Photovoltaic Solar Energy Conference, 2009, September, pp. 2370–2375 [Google Scholar]
  52. Scott Metals, Recycling: brisbane scrap metal recyclers: the best scrap copper prices, scrap brass prices, scrap aluminium prices, overall best scrap metal prices (The Scott Metals, n.d.), [Google Scholar]
  53. Markets Insider, Aluminium PRICE Today | Aluminium Spot Price Chart | Live Price of Aluminium per Ounce (Markets Insider, 2023, December 29), [Google Scholar]
  54. Market Index, Copper price & charts (Market Index, 2023, December 29), [Google Scholar]
  55. Y. Wu, P. Zheng, K. Weber, 27.6% Perovskite/c‐Si tandem solar cells using industrial fabricated TOPCon device, Adv. Energy Mater. 12, 2200821 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.