Issue |
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/epjpv/2024010 | |
Published online | 25 April 2024 |
https://doi.org/10.1051/epjpv/2024010
Original Article
Modelling recycling for the life cycle assessment of perovskite/silicon tandem modules
1
Institut Photovoltaïque d'Ile-de-France, 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
2
Mines Paris, PSL University, Centre Observation Impacts Energie (O.I.E.), 06904 Sophia Antipolis, France
3
TotalEnergies OneTech, 2 Place Jean Millier, 92078 Paris La Défense Cedex, France
* e-mail: lu.quercin@totalenergies.com
Received:
15
September
2023
Accepted:
29
January
2024
Published online: 25 April 2024
With the massive growth of the global capacity of photovoltaics (PV) over the last decade, the PV waste is expected to increase dramatically in the near future. Having potential to reduce the use of raw materials and preserve natural resources, PV recycling is attracting more and more attention. This being said, the environmental impacts over the life cycle of PV technologies, including the end-of-life (EoL) stage, should be evaluated carefully. Life cycle assessment (LCA) is currently the most common methodology to assess the potential environmental impacts of a product throughout its entire life cycle. However, the modelling of recycling in LCA has always been a challenge and no consensus has yet been reached, since the treatment of recycling does not only involve an EoL management of waste, but also the production of recycled material. Perovskite on silicon tandem is a widely investigated emerging PV technology having the potential to overcome the power conversion efficiency (PCE) limit of the single-junction crystalline silicon technology. The EoL modelling seems more challenging in the case of emerging technologies for which the EoL is more uncertain than for established technologies. In this article, six common and important approaches of EoL modelling in LCA were applied to future perovskite/silicon tandem modules to analyze the effect of the different EoL modelling approaches on the LCA results. The aim was to identify the most suitable methodological approaches to account for recycling, when modelling the life cycle of PV modules. The environmental performance of perovskite/silicon tandem modules was assessed over their life cycle and expressed in terms of impacts per m2 of module. After testing the six EoL modelling approaches and comparing the LCA results, the EoL modelling choice was found to lead to non-negligible differences. For example, in terms of climate change, the impact of the tandem modules ranges from 45 to 59 kg CO2-eq/m2. Among the six EoL modelling options, the approaches of simple cut-off and cut-off with economic allocation are more oriented towards the promotion of high rates of recycled material integrated as an input to the assessed product among industrial actors, while the approach of closed-loop allocation provides incentives to maximize the ratio of recycling at the EoL, regardless the initial ratio of recycled content within the product. Some approaches such as the circular footprint formula (CFF) tend to provide both incentives to increase the content of recycled input material in the manufacturing of the product and the recycling ratio at the EoL of such product. After applying the different alternatives, a set of recommendations to select the relevant EoL modelling approaches are provided: 1) the CFF is recommended as a representative approach due to its wide applicability, tending to provide an intermediate result and reflecting the characteristics of materials; 2) sensitivity analysis should be applied to check the robustness of the results, 3) the cut-off approach and the closed-loop allocation should be used at least for the sensitivity analysis.
Key words: Photovoltaic / end-of-life / sustainable / renewable energy / emerging technology
© L. Wang et al., Published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.