Open Access
Issue |
EPJ Photovolt.
Volume 15, 2024
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/epjpv/2024023 | |
Published online | 13 August 2024 |
- DNV, Energy transition outlook (2023). Available at: https://www.dnv.com/energy-transition-outlook/download-thank-you.html [Google Scholar]
- A. Alcañiz, D. Grzebyk, H. Ziar, O. Isabella, Trends and gaps in photovoltaic power forecasting with machine learning, Energy Rep. 9, 447 (2023) [Google Scholar]
- L. Li, S. Wen, M. Tseng, C. Wang, Renewable energy prediction: a novel short-term prediction model of photovoltaic output power, J. Clean. Prod. 228, 359 (2019) [Google Scholar]
- M. Trigo-González, F.J. Batlles, J. Alonso-Montesinos, P. Ferrada, J. del Sagrado, M. Martínez-Durbán, M. Cortés, C. Portillo, A. Marzo, Hourly PV production estimation by means of an exportable multiple linear regression model, Renew. Energy 135, 303 (2019) [Google Scholar]
- A. Mellit, S. Sağlam, S.A. Kalogirou, Artificial neural network-based model for estimating the produced power of a photovoltaic module, Renew. Energy 60, 71 (2013) [CrossRef] [Google Scholar]
- G. Graditi, S. Ferlito, G. Adinolfi, Comparison of photovoltaic plant power production prediction methods using a large measured dataset, Renew. Energy 90, 513 (2016) [CrossRef] [Google Scholar]
- S. Leva, A. Dolara, F. Grimaccia, M. Mussetta, E. Ogliari, Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power, Math. Comput. Simul. 131, 88 (2017) [CrossRef] [Google Scholar]
- L. Liu, D. Liu, Q. Sun, H. Li, R. Wennersten, Forecasting power output of photovoltaic system using a BP network method, Energy Procedia. 142, 700 (2017) [Google Scholar]
- B. Elsinga, W. van Sark, Spatial power fluctuation correlations in urban rooftop photovoltaic systems, Prog. Photovolt.: Res. Appl. 23, 1390 (2015) [CrossRef] [Google Scholar]
- V.P.A. Lonij, A.E. Brooks, A.D. Cronin, M. Leuthold, K. Koch, Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors, Sol. Energy 97, 58 (2013) [Google Scholar]
- A. Golnas, J. Bryan, R. Wimbrow, C. Hansen, S. Voss, Performance assessment without pyranometers: Predicting energy output based on historical correlation, in IEEE Photovoltaic Specialists Conference (2011), pp. 1160–1172 [Google Scholar]
- O. Tsafarakis, K. Sinapis, W.G. Van Sark, PV system performance evaluation by clustering production data to normal and non-normal operation, Energies 11, 0423 (2018) [Google Scholar]
- J. Leloux, L. Narvarte, A. Desportes, D. Trebosc, Performance to peers (P2P): a benchmark approach to fault detections applied to photovoltaic system fleets, Sol. Energy 202, 522 (2020) [CrossRef] [Google Scholar]
- A. Alcañiz, M.M. Nikam, Y. Snow, O. Isabella, H. Ziar, Photovoltaic system monitoring and fault detection using peer systems, Prog. Photovolt.: Res. Appl. 30, 1072 (2022) [Google Scholar]
- G. Guerra, P. Mercade Ruiz, L. Landberg, A data-driven model for solar inverters, in 37th EU PVSEC (2020), available at https://userarea.eupvsec.org/proceedings/EU-PVSEC-2020/5DO.4.1/ [Google Scholar]
- Available at https://globalsolaratlas.info/map [Google Scholar]
- W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: a python package for modeling solar energy systems, J. Open Source Softw. 3, 29 (2018) [Google Scholar]
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12, 2825 (2011) [Google Scholar]
- G. Guerra, P. Mercade Ruiz, G. Anamiati, L. Landberg, A study of the impact of multiple irradiance measurements on the performance of data-driven models, in 8th World conference on photovoltaic energy conversion (2022), available at https://userarea.eupvsec.org/proceedings/WCPEC-8/4BV.4.13/ [Google Scholar]
- S. Moslehi, T. Agami Reddy, S. Katipamula, Evaluation of data-driven models for predicting solar photovoltaics power output, Energy 142, 1057 (2018) [CrossRef] [Google Scholar]
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32, 8026 (2019) [Google Scholar]
- X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Aistats 9, 249 (2010) [Google Scholar]
- A.M. Khalid, I. Mitra, W. Warmuth, V. Schacht, Performance ratio − crucial parameter for grid connected PV plants, Renew. Sustain. Energy Rev. 65, 1139 (2016) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.