Open Access
Issue
EPJ Photovolt.
Volume 15, 2024
Article Number 28
Number of page(s) 14
DOI https://doi.org/10.1051/epjpv/2024025
Published online 10 September 2024
  1. J. Stein, C. Reise, J. Castro, G. Friesen, G. Maugeri, E. Urrejola, S. Ranta, Bifacial photovoltaic modules and systems: Experience and results from international research and pilot applications (2021). https://doi.org/10.2172/1779379 [Google Scholar]
  2. M.S. Mahmud, M. WazedurRahman, M.H. Lipu, A.A. Mamun, T. Annur, M.M. Islam, M.M. Rahman, M.A. Islam, Solar highway in bangladesh using bifacial pv, In 2018 IEEE International conference on system, computation, automation and networking (IEEE, 2018), pp. 1–7. https://doi.org/10.1109/ICSCAN.2018.8541253 [Google Scholar]
  3. M.H. Riaz, H. Imran, R. Younas, N.Z. Butt, The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems, Sol. Energy 230, 1004 (2021). https://doi.org/10.1016/j.solener.2021.10.051 [CrossRef] [Google Scholar]
  4. A. Martin, P.-P. Grand, M. Hull, J. Rousset, L. Oberbeck, Architecture of symmetrical bifacial perovskite/si/perovskite pv modules and lcoe comparison in bifacial applications, EPJ Photovolt. 14, 33 (2023). https://doi.org/10.1051/epjpv/2023025 [CrossRef] [EDP Sciences] [Google Scholar]
  5. O.A. Katsikogiannis, H. Ziar, O. Isabella, Integration of bifacial photovoltaics in agrivoltaic systems: a synergistic design approach, Appl. Energy 309, 118475 (2022). https://doi.org/10.1016/j.apenergy.2021.118475 [CrossRef] [Google Scholar]
  6. T. Baumann, H. Nussbaumer, M. Klenk, A. Dreisiebner, F. Carigiet, F. Baumgartner, Photovoltaic systems with vertically mounted bifacial pv modules in combination with green roofs, Sol. Energy 190, 139 (2019). https://doi.org/10.1016/j.solener.2019.08.014 [CrossRef] [Google Scholar]
  7. F. Markus, H. Michael, W. Susanne, T. Jutta, International technology roadmap for photovoltaic 2022, ITRPV-VDMA, Tech. Rep. (2021) [Google Scholar]
  8. M.H.O.P. Filho, V.A. Teixeira, Low cost electroluminescense lab implementation, in IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019 (ISES SWC, 2019), pp. 1–7. https://doi.org/10.18086/swc.2019.16.06 [Google Scholar]
  9. B. Decker, U. Jahn, Performance of 170 grid connected pv plants in northern germany − analysis of yields and optimization potentials, Sol. Energy 59, 127 (1997). https://doi.org/10.1016/S0038-092X(96)00132-6 [CrossRef] [Google Scholar]
  10. R.E. Pawluk, Y. Chen, Y. She, Photovoltaic electricity generation loss due to snow − a literature review on influence factors, estimation, and mitigation, Renew. Sustain. Energy Rev. 107, 171 (2019). https://doi.org/10.1016/j.rser.2018.12.031 [CrossRef] [Google Scholar]
  11. B. Marion et al., Measured and modeled photovoltaic system energy losses from snow for colorado and wisconsin locations, Sol. Energy 97, 112 (2013). https://doi.org/10.1016/J.SOLENER.2013.07.029 [CrossRef] [Google Scholar]
  12. M.B. Øgaard et al., Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection, Sol. Energy 223, 238 (2021). https://doi.org/10.1016/J.SOLENER.2021.05.023 [CrossRef] [Google Scholar]
  13. A. Singh, D. Jones, Snow shedding properties of bifacial pv panels, in 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (IEEE, 2022), pp. 0646–0648. https://doi.org/10.1109/PVSC48317.2022.9938947 [Google Scholar]
  14. D. Riley, C. Hansen, J. Stein, M. Lave, J. Kallickal, B. Marion, F. Toor, A performance model for bifacial pv modules, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, 2017), pp. 3348–3353. https://doi.org/10.1109/PVSC.2017.8366045 [CrossRef] [Google Scholar]
  15. B. Marion, S. MacAlpine, C. Deline, A. Asgharzadeh, F. Toor, D. Riley, J. Stein, C. Hansen, A practical irradiance model for bifacial pv modules, In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, 2017), pp. 1537–1542. https://doi.org/10.1109/PVSC.2017.8366263 [CrossRef] [Google Scholar]
  16. X. Sun, M.R. Khan, C. Deline, M.A. Alam, Optimization and performance of bifacial solar modules: a global perspective, Appl. Energy 212, 1601 (2018) [CrossRef] [Google Scholar]
  17. A. Asgharzadeh, F. Toor, B. Bourne, M.A. Anoma, A. Hoffman, C. Chaudhari, S. Bapat, R. Perkins, D. Cohen, G.M. Kimball, D. Riley, A benchmark and validation of bifacial pv irradiance models, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (IEEE, 2019), pp. 3281–3287. https://doi.org/10.1109/PVSC40753.2019.8981272 [Google Scholar]
  18. S. Ghafiri, M. Darnon, A. Davigny, J.P. Trovao, D. Abbes, A comparative study of existing approaches for modeling the incident irradiance on bifacial panels, in Electrimacs, Nancy, France (2022). https://hal.archives-ouvertes.fr/hal-03831357 [Google Scholar]
  19. F. Brihmat, S. Mekhtoub, Pv cell temperature/pv power output relationships homer methodology calculation, in Conférence Internationale des Energies Renouvelables (CIER'13/International Journal of Scientific Research & Engineering Technology, International Publisher & C. O, 2014), Vol. 1 [Google Scholar]
  20. I. Reda, A. Andreas, Solar position algorithm for solar radiation applications, Sol. Energy 76, 577 (2004). https://doi.org/10.1016/J.SOLENER.2003.12.003 [CrossRef] [Google Scholar]
  21. S.A. Pelaez, C. Deline, bifacial_radiance: a python package for modeling bifacial solar photovoltaic systems, J. Open Source Softw. 5, 1865 (2020). https://doi.org/10.21105/joss.01865 [CrossRef] [Google Scholar]
  22. H.K. Seidlitz, S. Thiel, A. Krins, H. Mayer, Solar radiation at the earth's surface 3, 705 (2001). https://doi.org/10.1016/S1568-461X(01)80071-5 [Google Scholar]
  23. M.A. Anoma, D. Jacob, B.C. Bourne, J.A. Scholl, D.M. Riley, C.W. Hansen, View factor model and validation for bifacial pv and diffuse shade on single-axis trackers, in Sun Protection in Man (Elsevier, Comprehensive Series in Photosciences, 2001), Vol. 3, pp. 705–738. https://doi.org/10.1109/PVSC.2017.8366704 [Google Scholar]
  24. J.M. Bright, Solcast: validation of a satellite-derived solar irradiance dataset, Sol. Energy 189, 435 (2019). https://doi.org/10.1016/j.solener.2019.07.086 [CrossRef] [Google Scholar]
  25. L. Khalil, K.L. Bhatti, M.A.I. Awan, M. Riaz, K. Khalil, N. Alwaz, Optimization and designing of hybrid power system using homer pro, Mater. Today: Proc. 47, S110 (2021). https://doi.org/10.1016/j.matpr.2020.06.054 [CrossRef] [Google Scholar]
  26. A.S. Irshad, G.A. Ludin, H. Masrur, M. Ahmadi, A. Yona, A. Mikhaylov, N. Krishnan, T. Senjyu, Optimization of grid-photovoltaic and battery hybrid system with most technically efficient pv technology after the performance analysis, Renew. Energy 207, 714 (2023). https://doi.org/10.1016/j.renene.2023.03.062 [CrossRef] [Google Scholar]
  27. D. Abbes, A. Martinez, G. Champenois, Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems, Math. Comput. Simul. 98, 46 (2014). https://doi.org/10.1016/j.matcom.2013.05.004 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.