Open Access
Issue
EPJ Photovolt.
Volume 15, 2024
Article Number 29
Number of page(s) 15
DOI https://doi.org/10.1051/epjpv/2024024
Published online 23 September 2024
  1. X. Li, H. Ke, S. Li, M. Gao, S. Li, J. Yu, H. Xie, K. Zhou, K. Zhang, L. Ye, Intrinsically stretchable organic photovoltaic cells with improved mechanical durability and stability via dual-donor polymer blending, Adv. Funct. Mater., 34, 2400702 (2024). https://doi.org/10.1002/adfm.202400702 [Google Scholar]
  2. D. Müller, E. Jiang, L. Campos Guzmán, P. Rivas Lázaro, C. Baretzky, S. Bogati, B. Zimmermann, U. Würfel, Ultra-stable ITO-free organic solar cells and modules processed from non-halogenated solvents under indoor illumination, Small 20, 2305437 (2024). https://doi.org/10.1002/smll.202305437 [CrossRef] [Google Scholar]
  3. Q. Ye, Z. Chen, D. Yang, W. Song, J. Zhu, S. Yang, J. Ge, F. Chen, Z. Ge, Ductile oligomeric acceptor‐modified flexible organic solar cells show excellent mechanical robustness and near 18% efficiency, Adv. Mater. 35, 2305562 (2023). https://dx.doi.org/10.1002/adma.202305562 [CrossRef] [Google Scholar]
  4. Y. Xu, H. Yao, L. Ma, Z. Wu, Y. Cui, L. Hong, Y. Zu, J. Wang, H.Y. Woo, J. Hou, Organic photovoltaic cells with high efficiencies for both indoor and outdoor applications, Mater. Chem. Front. 5, 893 (2021). https://doi.org/10.1039/D0QM00633E [CrossRef] [Google Scholar]
  5. C. Liu, J. Liu, X. Duan, Y. Sun, Green-processed non-fullerene organic solar cells based on y-series acceptors, Adv. Sci. 10, 2303842 (2023). https://doi.org/10.1002/advs.202303842 [CrossRef] [Google Scholar]
  6. X. Kong, T. He, H. Qiu, L. Zhan, S. Yin, Progress in organic photovoltaics based on green solvents: from solubility enhancement to morphology optimization, Chem. Commun. 59, 12051 (2023). https://doi.org/10.1039/D3CC04412B [CrossRef] [PubMed] [Google Scholar]
  7. F.J. Zhang, D.W. Zhao, Z.L. Zhuo, H. Wang, Z. Xu, Y.S. Wang, Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode, Sol. Energy Mater. Sol. Cells 94, 2416 (2010). https://doi-org.insis.bib.cnrs.fr/10.1016/j.solmat.2010.08.031 [CrossRef] [Google Scholar]
  8. S. Savagatrup, A.D. Printz, T.F. O'Connor, A.V. Zaretski, D. Rodriquez, E.J. Sawyer, K.M. Rajan, R.I. Acosta, S.E. Root, D. J. Lipomi, Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants, Energy Environ. Sci. 8, 55 (2014). https://doi.org/10.1039/C4EE02657H [Google Scholar]
  9. W. Li, D. Liu, T. Wang, Stability of non-fullerene electron acceptors and their photovoltaic devices, Adv. Funct. Mater. 31, 2104552 (2021). https://doi.org/10.1002/adfm.202104552 [CrossRef] [Google Scholar]
  10. E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant, N. Li, T. Wang, H.C. Wong, J.-S. Kim, W.C. Tsoi, Z. Li, J. Mater. Chem. A 7, 23361 (2019). https://doi.org/10.1039/C9TA05235F [CrossRef] [Google Scholar]
  11. P. Ding, D. Yang, S. Yanga, Z. Ge, Stability of organic solar cells: toward commercial applications, Chem. Soc. Rev. 53, 2350 (2024). https://dx.doi.org/10.1039/d3cs00492a [CrossRef] [PubMed] [Google Scholar]
  12. Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi, J. Ge, Y. Guo, X. Tong, F. Chen, Z. Ge, Isomerization strategy on non-fullerene guest acceptor enables stable organic solar cells over 19% efficiency, Energy Environ. Sci. 16, 3119 (2023). https://dx.doi.org/10.1039/d3ee01164j [CrossRef] [Google Scholar]
  13. T. Lin, T. Dai, Double cathode modification improves charge transport and stability of organic solar cells, Energies 15, 7643 (2022). https://doi.org/10.3390/en15207643 [CrossRef] [Google Scholar]
  14. S. K. Gupta, A. Shah, D.P. Singh, Chapter 19 − Metal oxides in organic solar cells, in Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications (Elsevier, Amsterdam, 2024), pp. 577–606. https://doi.org/10.1016/b978-0-323-99143-8.00018-3 [Google Scholar]
  15. H. Zheng, D. Zhou, L. Hu, Z. Xu, H. Xu, Y. Zhang, Y. Tong, B. Hu, Z. Li, L. Chen, Passivating the defects and modulating the surface energy of ZnO cathode interlayer for efficient nonfullerene organic solar cells, Sol. RRL 6, 2200871 (2022). https://doi.org/10.1002/solr.202200871 [CrossRef] [Google Scholar]
  16. S. Trost, T. Becker, A. Polywka, P. Görrn, M.F. Oszajca, N.A. Luechinger, D. Rogalla, M. Weidner, P. Reckers, T. Mayer, T. Riedl, Avoiding photoinduced shunts in organic solar cells by the use of tin oxide (SnOx) as electron extraction material instead of ZnO, Adv. Energy Mater. 6, 1600347 (2016). https://doi.org/10.1002/aenm.201600347 [CrossRef] [Google Scholar]
  17. G.K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A.M. Sai Krishna, S. Mukhopadhyay, A. Dey, T.K.S. Wong, S. Zhuk, S. Ghosh, S. Chakrabortty, C. Mahata, S. Biring, A. Kumar, C.S. Ribeiro, S. Ramakrishna, A.K. Chakraborty, S. Krishnamurthy, P. Sonar, M. Sharma, Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review, J. Mater. Chem. A 9, 16621 (2021). https://doi.org/10.1039/d1ta01291f [CrossRef] [Google Scholar]
  18. S. Shin, S. Shafian, K.Y. Ryu, Y.-K. Jeon, W.-S. Kim, K. Kim, Solution-processed TiO2 nanoparticles functionalized with catechol derivatives as electron transporting layer materials for organic photovoltaics, Adv. Mater. Interfaces 9, 2200118 (2022). https://doi.org/10.1002/admi.202200118 [CrossRef] [Google Scholar]
  19. D.K. Chaudhary, P.K. Dhawan, S.P. Patel, H.P. Bhasker, Large area semitransparent inverted organic solar cells with enhanced operational stability using TiO2 electron transport layer for building integrated photovoltaic devices, Mater. Lett. 283, 128725 (2021). https://doi.org/10.1016/j.matlet.2020.128725 [CrossRef] [Google Scholar]
  20. D.A. Mengistie, M.A. Ibrahem, P.C. Wang, C.W. Chu, Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells, ACS Appl. Mater. Interfaces 6, 2290 (2014). https://doi.org/10.1021/am405024d [Google Scholar]
  21. L.Y. Yin, Z.X. Zhao, F.Y. Jiang, Z.F. Li, S.X. Xiong, Y.H. Zhou, PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells, Org. Electron. 15, 2593 (2014). https://doi-org.insis.bib.cnrs.fr/10.1016/j.orgel.2014.07.028 [CrossRef] [Google Scholar]
  22. S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%, Adv. Mater., 36, 2400342 (2024). https://doi.org/10.1002/adma.202400342 [CrossRef] [Google Scholar]
  23. Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells, Nat. Energy, 9, 975 (2024). https://doi.org/10.1038/s41560-024-01557-z [CrossRef] [Google Scholar]
  24. W. Zhang, Y. Yue, R. Yang, Y. Zhang, W. Du, G. Lu, J. Zhang, H. Zhou, X. Zhang, Y. Zhang, A high-efficiency and stable organic solar cell with balanced crystallization kinetics, Energy Environ. Sci. 17, 2182 (2024). https://doi.org/10.1039/D3EE04169G [CrossRef] [Google Scholar]
  25. J. Fu, Q. Yang, P. Huang, S. Chung, K. Cho, Z. Kan, H. Liu, X. Lu, Y. Lang, H. Lai, F. He, P.W.K. Fong, S. Lu, Y. Yang, Z. Xiao, G. Li, Rational molecular and device design enables organic solar cells approaching 20% efficiency, Nat. Commun. 15, 1830 (2024). https://doi.org/10.1038/s41467-024-46022-3 [CrossRef] [Google Scholar]
  26. X. Yu, P. Ding, D. Yang, P. Yan, H. Wang, S. Yang, J. Wu, Z. Wang, H. Sun, Z. Chen, L. Xie, Z. Ge, Self-assembled molecules with asymmetric backbone for highly stable binary organic solar cells with 19.7% efficiency, Angew. Chem. Int. Ed. 63, e202401518 (2024). https://doi.org/10.1002/anie.202401518 [CrossRef] [PubMed] [Google Scholar]
  27. N.Y. Doumon, L. Yang, F. Rosei, Ternary organic solar cells: A review of the role of the third element, Nano Energy 94, 106915 (2022). https://doi.org/10.1016/j.nanoen.2021.106915 [CrossRef] [Google Scholar]
  28. D.H. Kim, D.J. Lee, B. Kim, C. Yun, M.H. Kang, Tailoring PEDOT:PSS polymer electrode for solution-processed inverted organic solar cells, Solid-State Electron. 169, 107808 (2020). https://doi.org/10.1016/j.sse.2020.107808 [CrossRef] [Google Scholar]
  29. S. Wang, Simulation and optimization of C60-based organic light-emitting diodes, Mater. Sci. Forum 1026, 142 (2021). https://doi.org/10.4028/www.scientific.net/MSF.1026.142 [CrossRef] [Google Scholar]
  30. T. Tharun, A. Manimegala, A. Vasantharthan, N. Vinitha, M. Shenbagapriya, Optimization of layer thickness of htl free perovskite solar cell, i-Manager's J. Mater. Sci. 8, 31 (2021). https://doi.org/10.26634/jms.8.4.17536 [Google Scholar]
  31. R.C.I. MacKenzie, T. Kirchartz, G.F.A. Dibb, J. Nelson, Modeling nongeminate recombination in P3HT:PCBM solar cells, J. Phys. Chem. C 115, 9806 (2011). https://doi.org/10.1021/jp200234m [CrossRef] [Google Scholar]
  32. A. Singh, A. Pande, D. Patwa, R. Kalaria, A. Jain, A. Kumar, N. Gupta, OghmaNano simulation of PM6:D18:L8-BO organic solar cell and comparison with other lesser efficient solar cells, in 2023 4th International Conference for Emerging Technology (INCET), (Belgaum, India, 2023), pp. 1–4. https://doi.org/10.1109/INCET57972.2023.10170292 [Google Scholar]
  33. M. Omrani, H. Fallah, K.-L. Choy, M. Abdi-Jalebi, Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT: PCBM polymer solar cells, Sci. Rep. 11, 19774 (2021). https://doi-org.insis.bib.cnrs.fr/10.1038/s41598-021-99095-1 [CrossRef] [Google Scholar]
  34. A.K. Mishra, R.K. Shukla, Simulation of photovoltaic material (donor blends PTB7:PC70BM) polymer for solar cell application, Mater. Today: Proc. 46, 2288 (2021). https://doi.org/10.1016/j.matpr.2021.04.084 [CrossRef] [Google Scholar]
  35. M. Hußner, R.A. Pacalaj, G. Olaf Müller-Dieckert, C. Liu, Z. Zhou, N. Majeed, S. Greedy, I. Ramirez, N. Li, S. M. Hosseini, C. Uhrich, C.J. Brabec, J.R. Durrant, C. Deibel, R.C.I. MacKenzie, Machine learning for ultra high throughput screening of organic solar cells: solving the needle in the haystack problem, Adv. Energy Mater. 14, 2303000 (2024). https://doi.org/10.1002/aenm.202303000 [CrossRef] [Google Scholar]
  36. R.C.I. MacKenzie, T. Kirchartz, G.F.A. Dibb, J. Nelson, Modeling nongeminate recombination in P3HT:PCBM solar cells, J. Phys. Chem. C 115, 9806 (2011). https://doi.org/10.1021/jp200234m [CrossRef] [Google Scholar]
  37. R.C.I. MacKenzie, C.G. Shuttle, M.L. Chabinyc, J. Nelson, Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells, Adv. Energy Mater. 2, 662 (2012). https://doi.org/10.1002/aenm.201100709 [CrossRef] [Google Scholar]
  38. M. Amir, M.P. Singh, Extraction of charge transfer states dissociation probability and localized states parameters for PTB7-Th:PC71BM photovoltaic cells: using experimental J-V curves, Eng. Res. Express 6, 015085 (2024). https://doi.org/10.1088/2631-8695/ad2488 [CrossRef] [Google Scholar]
  39. K.W. Lee, K.M. Kim, J. Lee, R. Amin, B. Kim, S.K. Park, S.K. Lee, S. H. Park, H. J. Kim, A two-dimensional DNA lattice implanted polymer solar cell, Nanotechnology 22, 375202 (2011). https://doi.org/10.1088/0957-4484/22/37/375202 [CrossRef] [PubMed] [Google Scholar]
  40. J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yuc, H.-F. Mengd, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, J. Mater. Chem. 20, 862 (2010). https://doi.org/10.1039/B921396A [CrossRef] [Google Scholar]
  41. T.-Y. Tsai, P.-R. Yan, S.-H. Yang, Solution-processed hybrid light-emitting devices comprising TiO2 nanorods and WO3 layers as carrier-transporting layers, Nanoscale Res. Lett. 11, 516 (2016). https://doi.org/10.1186/s11671-016-1733-x [CrossRef] [PubMed] [Google Scholar]
  42. L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R.C.I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology, Nat. Mater. 21, 656 (2022). https://doi.org/10.1038/s41563-022-01244-y [CrossRef] [PubMed] [Google Scholar]
  43. V.-H. Tran, R.B. Ambade, S.B. Ambade, S.-H. Lee, I.-H. Lee, Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells, ACS Appl. Mater. Interfaces 9, 1645 (2017). https://doi.org/10.1021/acsami.6b10857 [CrossRef] [PubMed] [Google Scholar]
  44. H. Hwang, D.H. Sin, C. Park, K. Cho, Ternary organic solar cells based on a wide-bandgap polymer with enhanced power conversion efficiencies, Sci. Rep. 9, 12081 (2019). https://doi.org/10.1038/s41598-019-48306-x [CrossRef] [Google Scholar]
  45. S. Jeong, A. Rana, J.-H. Kim, D. Qian, K. Park, J.-H. Jang, J. Luke, S. Kwon, J. Kim, P. S. Tuladhar, J.-S. Kim, K. Lee, J. R. Durrant, H. Kang, New ternary blend strategy based on a vertically self-assembled passivation layer enabling efficient and photostable inverted organic solar cells, Adv. Sci. 10, 2206802 (2023). https://doi.org/10.1002/advs.202206802 [CrossRef] [Google Scholar]
  46. Z. Liu, L. Wang, H. Zhao, P. Chen, X. Xie, High-performance inverted ternary organic solar cells using solution-processed tin oxide as the electron transport layer, Org. Electron. 120, 106828 (2023). https://doi.org/10.1016/j.orgel.2023.106828 [CrossRef] [Google Scholar]
  47. Y.-F. Liu, S.-W. Zhang, Y.-X. Li, S.-L. Li, L.-Q. Huang, Y.-N. Jing, Q. Cheng, L.-G. Xiao, B.-X. Wang, B. Han, J.J. Kang, Y. Zhang, H. Zhang, H.-Q. Zhou, Solution-processed molybdenum oxide hole transport layer stabilizes organic solar cells, Chin. J. Polym. Sci. 41, 202 (2023). https://doi.org/10.1007/s10118-022-2873-3 [CrossRef] [Google Scholar]
  48. H.-C. Cha, C.-F. Li, T.-Y. Chung, W.-Y. Ma, C.-S. Tsao, Y.-C. Huang, Spray-coated MoO3 hole transport layer for inverted organic photovoltaics, Polymers 16, 981 (2024). https://doi.org/10.3390/polym16070981 [CrossRef] [PubMed] [Google Scholar]
  49. S. Park, F.T.A. Wibowo, N.V. Krishna, J. Ryu, H. Lee, J.H. Lee, Y.J. Yoon, J.Y. Kim, J.H. Seo, S.-H. Oh, S.-Y. Jang, S. Cho, Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for highly efficient polymer solar cells, J. Mater. Chem. A 9, 15394 (2021). https://doi.org/10.1039/d1ta04078b [CrossRef] [Google Scholar]
  50. A.U. Rahman, A. El Astal-Quirós, G. Susanna, H. Javanbakht, E. Calabrò, G. Polino, B. Paci, A. Generosi, F.R. Riva, F. Brunetti, A. Reale, Scaling-up of solution-processable tungsten trioxide (WO3) nanoparticles as a hole transport layer in inverted organic photovoltaics, Energies 17, 814 (2024). https://doi.org/10.3390/en17040814 [CrossRef] [Google Scholar]
  51. T. Matsumoto, T. Murakami, F. Schlüter, H. Murata, V. Vohra, F. Rizzo, Water-soluble organic dyes as efficient anode interlayer materials for PEDOT:PSS-free inverted bulk heterojunction solar cells, Sol. RRL 6, 2100661 (2022). https://doi.org/10.1002/solr.202100661 [CrossRef] [Google Scholar]
  52. C. Anrango-Camacho, K. Pavón-Ipiales, B.A. Frontana-Uribe, A. Palma-Cando, Recent advances in hole-transporting layers for organic solar cells, Nanomaterials 12, 443 (2022). https://doi.org/10.3390/nano12030443 [Google Scholar]
  53. K. N'Konou, M. Chalh, B. Lucas, S. Vedraine, P. Torchio, Improving the performance of inverted organic solar cells embedding metal-oxide layer coating silver nanoparticles deposited by e-beam evaporation method, Polym. Int. 68, 979 (2019). https://doi.org/10.1002/pi.5789 [CrossRef] [Google Scholar]
  54. K. N'Konou, M. Chalh, V. Monnier, N.P. Blanchard, Y. Chevolot, B. Lucas, S. Vedraine, P. Torchio, Impact of Ag@SiO2 core-shell nanoparticles on the photoelectric current of plasmonic inverted organic solar cells, Synth. Met. 239, 22 (2018). https://doi.org/10.1016/j.synthmet.2018.03.003 [CrossRef] [Google Scholar]
  55. X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, Y. Xia, PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications, Adv. Sci. 6, 1900813 (2019). https://doi.org/10.1002/advs.201900813 [CrossRef] [Google Scholar]
  56. X. Liu, Z. Zheng, J. Wang, Y. Wang, B. Xu, S. Zhang, J. Hou, Fluidic manipulating of printable zinc oxide for flexible organic solar cells, Adv. Mater. 34, 2106453 (2021). https://doi.org/10.1002/adma.202106453 [Google Scholar]
  57. Y. Zhang, T. Huang, N. Weng, Y. Chen, D. Wang, Z. Zhang, Q. Liao, J. Zhang, Efficient ternary organic solar cells with suppressed nonradiative recombination and fine-tuned morphology via IT-4F as guest acceptor, ChemSusChem, in press e202301741 (2024). https://doi.org/10.1002/cssc.202301741 [CrossRef] [PubMed] [Google Scholar]
  58. D. Yun, S. Xuyao, S.-Y. Lee, V. V. Sharma, H. Li, S.-J. Park, Y.-H. Kim, G.-H. Kim, High efficiency of ternary blend organic solar cells with a BTP-4F/BTP-4H derivative, ACS Appl. Energy Mater. 7, 1243 (2024). https://doi.org/10.1021/acsaem.3c02876 [CrossRef] [Google Scholar]
  59. M. Liu, X. Ge, X. Jiang, D. Chen, F. Guo, S. Gao, Q. Peng, L. Zhao, Y. Zhang, 18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor, Nano Energy 112, 108501 (2023). https://doi-org.ressources-electroniques.univ-lille.fr/10.1016/j.nanoen.2023.108501 [CrossRef] [Google Scholar]
  60. T. Xu, X. Zhang, S. Zhang, W. Zhang, W. Song, A fused-ring electron acceptor with phthalimide-based ending groups for efficient ternary organic solar cells, ACS Appl. Mater. Interfaces 16, 4618 (2024). https://doi.org/10.1021/acsami.3c15503 [CrossRef] [PubMed] [Google Scholar]
  61. M. Wang, Y. Shi, Z. Zhang, Y. Shen, M. Lv, Y. Yan, H. Zhou, J. Zhang, K. Lv, Y. Zhang, H. Penge, Z. Wei, Improving the efficiency of ternary organic solar cells by reducing energy loss, Nanoscale Horiz. 8, 1073 (2023). https://doi.org/10.1039/D3NH00122A [CrossRef] [PubMed] [Google Scholar]
  62. L. Di Mario, D. Garcia Romero, H. Wang, E.K. Tekelenburg, S. Meems, T. Zaharia, G. Portale, M.A. Loi, Outstanding fill factor in inverted organic solar cells with SnO2 by atomic layer deposition, Adv. Mater., 36, 2301404 (2024). https://doi.org/10.1002/adma.202301404 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.