Issue
EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 30
Number of page(s) 10
Section Modelling
DOI https://doi.org/10.1051/epjpv/2023018
Published online 23 October 2023
  1. DNV, Energy transition outlook (2022). Available at: https://www.dnv.com/energy-transition-outlook/download.html, visited on 14/09/2023 [Google Scholar]
  2. J. Kim, M. Rabelo, S.P. Padi, H. Yousuf, E.-C. Cho, J. Yi, A review of the degradation of photovoltaic modules for life expectancy, Energies 14, 4278 (2021) [CrossRef] [Google Scholar]
  3. T. Ishii, A. Masuda, Annual degradation rates of recent crystalline silicon photovoltaic modules, Progr. Photovolt.: Res. Appl. 25, 953 (2017) [CrossRef] [Google Scholar]
  4. R. Eke, H. Demircan, Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey, Energ. Conver. Manage. 65, 580 (2013) [CrossRef] [Google Scholar]
  5. V. Sharma, A. Kumar, O. Sastry, S. Chandel, Performance assessment of different solar photovoltaic technologies under similar outdoor conditions, Energy 58, 511 (2013) [CrossRef] [Google Scholar]
  6. B. Marion, M.G. Deceglie, T.J. Silverman, Analysis of measured photovoltaic module performance for Florida, Oregon, and Colorado locations, Sol. Energy 110, 736 (2014) [Google Scholar]
  7. M. Schweiger, J. Bonilla, W. Herrmann, A. Gerber, U. Rau, Performance stability of photovoltaic modules in different climates, Progr. Photovolt.: Res. Appl. 25, 968 (2017) [CrossRef] [Google Scholar]
  8. P. Rajput, G. Tiwari, O. Sastry, B. Bora, V. Sharma, Degradation of mono-crystalline photovoltaic modules after 22 yr of outdoor exposure in the composite climate of India, Sol. Energy 135, 786 (2016) [CrossRef] [Google Scholar]
  9. D.C. Jordan, T.J. Silverman, B. Sekulic, S.R. Kurtz, PV degradation curves: non-linearities and failure modes, Prog. Photovolt. Res. Appl. 25, 583 (2017) [CrossRef] [Google Scholar]
  10. D.C. Jordan, S.R. Kurtz, Photovoltaic degradation rates − an analytical review, Progr. Photovolt.: Res. Appl. 21, 12 (2013) [CrossRef] [Google Scholar]
  11. C. Deline, R. White, M. Muller, K. Anderson, K. Perry, M. Deceglie, L. Simpson, D. Jordan, PV fleet performance data initiative program and methodology, in 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp. 1363–1367 [CrossRef] [Google Scholar]
  12. F. Carigiet, C.J. Brabec, F.P. Baumgartner, Long-term power degradation analysis of crystalline silicon PV modules using indoor and outdoor measurement techniques, Renew. Sust. Energ. Rev. 144, 111005 (2021) [CrossRef] [Google Scholar]
  13. M. Bolinger, W. Gorman, D. Millstein, D. Dirk, System-level performance and degradation of 21 GWDC of utility-scale PV plants in the United States, J. Renew. Sust. Energ. 12, 043501 (2020) [CrossRef] [Google Scholar]
  14. K. Kiefer, B. Farnung, B. Müller, Degradation in PV power plants: theory and practice, in 35th EU PVSEC, 2018 [Google Scholar]
  15. D.C. Jordan, S.R. Kurtz, K. VanSant, J. Newmiller, Compendium of photovoltaic degradation rates, Prog. Photovolt.: Res. Appl. 24, 978 (2016) [CrossRef] [Google Scholar]
  16. A. Phinikarides, N. Kindyni, G. Makrides, G.E. Georghiou, Review of photovoltaic degradation rate methodologies, Renew. Sust. Energ. Rev. 40, 143 (2014) [CrossRef] [Google Scholar]
  17. S. Lindig, I. Kaaya, K. Weiß, D. Moser, M. Topic, Review of statistical and analytical degradation models for photovoltaic modules and systems as well as related improvements, IEEE J. Photovolt. 8, 1773 (2018) [CrossRef] [Google Scholar]
  18. M. Theristis, A. Livera, C.B. Jones, G. Makrides, G.E. Georghiou, J.S. Stein, Nonlinear photovoltaic degradation rates: modeling and comparison against conventional methods, IEEE J. Photovolt. 10, 1112 (2020) [CrossRef] [Google Scholar]
  19. I. Romero-Fiances, A. Livera, M. Theristis, G. Makrides, J.S. Stein, G. Nofuentes, J. de la Casa, G.E. Georghiou, Impact of duration and missing data on the long-term photovoltaic degradation rate estimation, Renew. Energy 181, 738 (2022) [CrossRef] [Google Scholar]
  20. IEA PVPS Task 13, Assessment of performance loss rate of PV power systems, performance, operation and reliability of photovoltaic systems (2021) [Google Scholar]
  21. D.C. Jordan, C. Deline, S.R. Kurtz, G.M. Kimball, M. Anderson, Robust PV degradation methodology and application, robust PV degradation methodology and application, IEEE J. Photovolt. 8, 525 (2018) [CrossRef] [Google Scholar]
  22. IEA PVPS Task 13, Service life estimation for photovoltaic modules, performance, operation and reliability of photovoltaic system (2021) [Google Scholar]
  23. M.G. Deceglie, A. Nag, A. Shinn, G. Kimball, D. Ruth, D. Jordan, J. Yan, K. Anderson, K. Perry, M. Mikofski, M. Muller, W. Vining, C. Deline,RdTools, version 2.0.5, Computer Software [Google Scholar]
  24. G. Guerra, P. Mercade Ruiz, L. Landberg, A data-driven model for solar inverters, in 37th EU PVSEC, 2020 [Google Scholar]
  25. D. Optiz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif. Intell. Res. 11, 169 (1999) [CrossRef] [Google Scholar]
  26. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32, 8024 (2019) [Google Scholar]
  27. H. van Hasselt, A. Guez, A.D. Silver, Deep reinforcement learning with double Q-learning, in AAAI'16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (ACM, 2016), pp. 2094–2100 [Google Scholar]
  28. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning, arXiv:1509.02971 (2019) [Google Scholar]
  29. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations, arXiv:1711.10561 (2017) [Google Scholar]
  30. https://github.com/NREL/rdtools/blob/master/docs/degradation_and_soiling_example_pvdaq_4.ipynb [Google Scholar]
  31. D. Rangel-Martinez, K.D.P. Nigam, L.A. Ricardez-Sandoval, Machine learning on sustainable energy: a review and outlook on renewable energy systems, catalysis, smart grid and energy storage, Chem. Eng. Res. Des. 174, 414 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.