EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘Recent Advances in Spectroscopy and Microscopy of Thin-films Materials, Interfaces, and Solar Cells 2021', edited by A. Vossier, M. Gueunier-Farret, J.-P. Kleider and D. Mencaraglia
Article Number 40
Number of page(s) 13
Section Semiconductor Thin Films
Published online 22 December 2023
  1. D.C. Look, J.H. Leach, On the accurate determination of absorption coefficient from reflectanceand transmittance measurements: application to Fe-doped GaN, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 34, 04J105 (2016) [Google Scholar]
  2. P. Pearce, RayFlare: flexible optical modelling of solar cells, JOSS 6, 3460 (2021) [CrossRef] [Google Scholar]
  3. M. Seitz et al., Mapping the trap-state landscape in 2D metal‐halide perovskites using transient photoluminescence microscopy, Adv. Optical Mater. 9, 2001875 (2021) [Google Scholar]
  4. R. Bhattacharya, B. Pal, B. Bansal, On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation, Appl. Phys. Lett. 100, 222103 (2012) [CrossRef] [Google Scholar]
  5. E. Daub, P. Würfel, Ultralow values of the absorption coefficient of Si obtained from luminescence, Phys. Rev. Lett. 74, 1020 (1995) [CrossRef] [PubMed] [Google Scholar]
  6. C. Barugkin et al., Ultralow absorption coefficient and temperature dependence of radiative recombination of CH3NH3PbI3 perovskite from photoluminescence, J. Phys. Chem. Lett. 6, 767 (2015) [CrossRef] [Google Scholar]
  7. T. Trupke, E. Daub, P. Würfel, Absorptivity of silicon solar cells obtained from luminescence, Sol. Energy Mater. Sol. Cells 53, 103 (1998) [CrossRef] [Google Scholar]
  8. A. Merdasa et al., Impact of excess lead iodide on the recombination kinetics in metal halide perovskites, ACS Energy Lett. 4, 1370 (2019) [CrossRef] [Google Scholar]
  9. D. Berdebes et al., Photoluminescence excitation spectroscopy for in-line optical characterization of crystalline solar cells, IEEE J. Photovoltaics 3, 1342 (2013) [CrossRef] [Google Scholar]
  10. J. Jimenez, J.W. Tomm, Photoluminescence (PL) techniques, in Spectroscopic Analysis of Optoelectronic Semiconductors (Springer International Publishing, 2016), Vol. 202, pp. 143–211 [CrossRef] [Google Scholar]
  11. E.K. Grubbs, J. Moore, P.A. Bermel, Photoluminescence excitation spectroscopy characterization of surface and bulk quality for early-stage potential of material systems, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (IEEE, 2019), pp. 0377–0381. doi:10.1109/PV SC40753. 2019.8980637 [Google Scholar]
  12. H.T. Nguyen et al., Spatially and spectrally resolved absorptivity: new approach for degradation studies in perovskite and perovskite/silicon tandem solar cells, Adv. Energy Mater. 10, 1902901 (2020) [CrossRef] [Google Scholar]
  13. M.K. Juhl, T. Trupke, M. Abbott, B. Mitchell, Spatially resolved absorptance of silicon wafers from photoluminescence imaging, IEEE J. Photovoltaics 5, 1840 (2015) [CrossRef] [Google Scholar]
  14. J.S. Bhosale, J.E. Moore, X. Wang, P. Bermel, M.S. Lundstrom, Steady-state photoluminescent excitation characterization of semiconductor carrier recombination, Rev. Sci. Instrum. 87, 013104 (2016) [CrossRef] [PubMed] [Google Scholar]
  15. X. Wang et al., Photovoltaic material characterization with steady state and transient photoluminescence, IEEE J. Photovoltaics 5, 282 (2015) [CrossRef] [Google Scholar]
  16. R.C. Miller, A.C. Gossard, G.D. Sanders, Y.-C. Chang, J.N. Schulman, New evidence of extensive valence-band mixing in GaAs quantum wells through excitation photoluminescence studies, Phys. Rev. B 32, 8452 (1985) [CrossRef] [PubMed] [Google Scholar]
  17. M.C. DeLong et al., Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52 In0.48 P, J. Appl. Phys. 73, 5163 (1993) [CrossRef] [Google Scholar]
  18. X. Wang et al., Valence band splitting in wurtzite InGaAs nanoneedles studied by photoluminescence excitation spectroscopy, ACS Nano 8, 11440 (2014) [CrossRef] [PubMed] [Google Scholar]
  19. T. Campos et al., Unraveling the formation mechanism of the 2D/3D perovskite heterostructure for perovskite solar cells using multi-method characterization, J. Phys. Chem. C 126, 13527 (2022) [CrossRef] [Google Scholar]
  20. A. Delamarre, Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images, J. Photon. Energy 2, 027004 (2012) [CrossRef] [Google Scholar]
  21. S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inform. Theory 28, 129 (1982) [CrossRef] [Google Scholar]
  22. S. Cacovich et al., In-depth chemical and optoelectronic analysis of triple-cation perovskite thin films by combining XPS profiling and PL imaging, ACS Appl. Mater. Interfaces 14, 34228 (2022) [CrossRef] [PubMed] [Google Scholar]
  23. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells, Chem. Rev. 120, 7867 (2020) [CrossRef] [PubMed] [Google Scholar]
  24. B. Bérenguier et al., Defects characterization in thin films photovoltaics materials by correlated high-frequency modulated and time resolved photoluminescence: an application to Cu(In,Ga)Se2, Thin Solid Films 669, 520 (2019) [CrossRef] [Google Scholar]
  25. S. De Wolf et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett. 5, 1035 (2014) [CrossRef] [Google Scholar]
  26. B.T. Van Gorkom, T.P.A. Van Der Pol, K. Datta, M.M. Wienk, R.A.J. Janssen, Revealing defective interfaces in perovskite solar cells from highly sensitive sub-bandgap photocurrent spectroscopy using optical cavities, Nat. Commun. 13, 349 (2022) [CrossRef] [Google Scholar]
  27. S. Cacovich et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces, Nat. Commun. 13, 2868 (2022) [CrossRef] [Google Scholar]
  28. W. van Roosbroeck, W. Shockley, Photon-radiative recombination of electrons and holes in germanium, Phys. Rev. 94, 1558 (1954) [CrossRef] [Google Scholar]
  29. P. Würfel, S. Finkbeiner, E. Daub, Generalized Planck's radiation law for luminescence via indirect transitions, Appl. Phys. A 60, 67 (1995) [CrossRef] [Google Scholar]
  30. P. Fassl et al., Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling, Matter 4, 1391 (2021) [CrossRef] [Google Scholar]
  31. J.K. Katahara, H.W. Hillhouse, Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence, J. Appl. Phys. 116, 173504 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.