EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 39
Number of page(s) 10
Section Modules and Systems
Published online 19 December 2023
  1. ITRPV, International Technology Roadmap for Photovoltaic (ITRPV) − 2022 Results, April 2023 [Google Scholar]
  2. K. Ilseet al., Techno-economic assessment of soiling losses and mitigation strategies for solar power generation 3, 2303 (2019) [Google Scholar]
  3. IEA PVPS-Report T13-21, Soiling losses impact on the performance of photovoltaic power plants, 2022, and references therein [Google Scholar]
  4. W. Köppen, Klassifikation der Klimate nach Temperatur, Niederschlag und Jahreslauf, Petermanns Geographische Mitteilungen 64, 193 (1918) [Google Scholar]
  5. W. Köppen, R. Geiger, Das geographische System der Klimate in Handbuch der Klimatologie, (Gebrüder Bornträger, Berlin, 1936) [Google Scholar]
  6. M. Kottek et al., World map of the Köppen-Geiger climate classification − updated, Meteorologische Zeitschrift 15, 259 (2006) [CrossRef] [Google Scholar]
  7. F. Rubel, M. Kottek, Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification, Meteorologische Zeitschrift 19, 135 (2010) [CrossRef] [Google Scholar]
  8. D. Cui, S. Liang, D. Wang, Observed and projected changes in global climate zones based on Köppen climate classification, WIREs Climate Change 12, e701 (2021) [CrossRef] [Google Scholar]
  9. and references given therein [Google Scholar]
  10. P. Del Tredici, The new USDA plant hardiness zone map, (1990), [Google Scholar]
  11. J. Ascencio-Vasquez, K. Brecl, M. Topič, Methodology of Koppen-Geiger-Photovoltaic climate classi-fication and implications to worldwide mapping of PV system performance, Sol. Energy 191, 672 (2019) [CrossRef] [Google Scholar]
  12. T. Karin, C. Birk Jones, A. Jain, Photovoltaic degradation climate zones in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (IEEE, 2019) [Google Scholar]
  13. D.S. Peck, Comprehensive model for humidity testing correlation, in 24th International Reliability Physics Symposium, Anaheim, CA, USA, 1986, pp. 44–50 [Google Scholar]
  14. C. Schwingshackl et al., Wind effect on PV module temperature: analysis of different techniques for an accurate estimation, Energy Procedia 40, 77 (2013) [CrossRef] [Google Scholar]
  15. T. Huld, A.M. Gracia Amillo, Estimating PV module performance over large geographical regions: the role of irradiance, air temperature, wind speed and solar spectrum, Energies 8, 5159 (2015) [CrossRef] [Google Scholar]
  16. A. Buck, New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol. Climatol. 20, 1527 (1981) [CrossRef] [Google Scholar]
  17. M. Koehl, M. Heck, S. Wiesmeier, Modelling of conditions for accelerated life time testing of Humidity impact on PV-modules based on monitoring of climatic data, Sol. Energy Mater. Sol. Cells 99, 282 (2012) [CrossRef] [Google Scholar]
  18. I. Kaaya et al., Modeling outdoor service lifetime prediction of PV modules: effects of combined climatic stressors on PV module power degradation, IEEE J. Photovolt. 9, 1105 (2019) [CrossRef] [Google Scholar]
  19. J. Ascencio-Vasquez et al., Global climate data processing and mapping of degradation mechanisms and degradation rates of PV modules, Energies 12, 4749 (2019) [CrossRef] [Google Scholar]
  20. [Google Scholar]
  21. D. Jordan, S.R. Kurtz, Photovoltaic degradation rates − an analytical review, Prog. Photovolt.: Res. Appl. 21, 12 (2013) [CrossRef] [Google Scholar]
  22. D. Jordan, S.R. Kurtz, K. VanSant, J. Newmiller, Compendium of photovoltaic degradation rates, Prog. Photovolt.: Res. Appl. 24, 978 (2016) [CrossRef] [Google Scholar]
  23. D. Jordan, B. Marion, C. Deline, T. Barnes, M. Bolinger, PV field reliability status − analysis of 100 000 solar systems, Prog. Photovolt.: Res. Appl. 28, 739 (2020) [CrossRef] [Google Scholar]
  24. M. Aghaei et al., Review of degradation and failure phenomena in photovoltaic modules, Renew. Sustain. Energy Rev. 159, 112160 (2022) [CrossRef] [Google Scholar]
  25. (modified) [Google Scholar]
  26. St. Großer, in Untersuchung der Korrosionsstruktur am massiv korrodiertem Quer-verbinder, PV Symposium Bad Staffelstein, 2023 [Google Scholar]
  27. B. Jaeckel, Th. Franke, J. Arp, Long term statistics on micro cracks and their impact on performance, in 31st European Photovoltaic Solar Energy Conference, 2015 [Google Scholar]
  28. M.D. Kempe, J.H. Wohlgemuth, Evaluation of temperature and humidity on PV module component degradation, in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), pp. 0120–0125 [CrossRef] [Google Scholar]
  29. R. Heidrich, Spatially resolved degradation analysis of solar modules after combined accelerated aging, in 50th IEEE Photovoltaic Specialists Conference PVSC, submitted, 2023 [Google Scholar]
  30. R. Heidrich, UV lamp spectral effects on the aging behavior of encapsulants for photovoltaic modules, submitted to Sol. Energy Mater. Sol. Cells(2023) [Google Scholar]
  31. R. Wieser et al., Field retrieved photovoltaic backsheet survey from diverse climate zones: analysis of degradation patterns and phenomena, Sol. Energy 259, 49 (2023) [Google Scholar]
  32. IEC 61215-series: terrestrial photovoltaic (PV) modules − design qualification and type approval [Google Scholar]
  33. IEC 62892: Extended thermal cycling of PV module [Google Scholar]
  34. IEC TS 63126: Guidelines for qualifying PV modules, components and materials for operation at high temperatures [Google Scholar]
  35. IEC 60364-7-712: Low voltage electrical installations − Part 7-712: Requirements for special installations or locations − Solar photovoltaic (PV) power supply systems [Google Scholar]
  36. IEC TS 63209-1: Photovoltaic modules − Extended-stress testing [Google Scholar]
  37. IEC TS 63209-2: Photovoltaic modules − Extended-stress testing − Part 2: Polymeric component materials [Google Scholar]
  38. IEC TR 63279: Derisking photovoltaic modules − Sequential and combined accelerated stress testing [Google Scholar]
  39. IEC 62788-series: Measurement procedures for materials used in photovoltaic module [Google Scholar]
  40. E. Skoplaki, A.G. Boudouvis, J.A. Palyvos, A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Sol. Energy Mater. Sol. Cells, 92, 1393 (2008) [CrossRef] [Google Scholar]
  41. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Sol. Energy 83, 614 (2009) [CrossRef] [Google Scholar]
  42. IEC 61853-2: Photovoltaic (PV) module performance testing and energy rating − Part 2: Part 2: Spectral responsivity, incidence angle and module operating temperature measurements [Google Scholar]
  43. IEC 61853-3: Photovoltaic (PV) module performance testing and energy rating − Part 3: Energy rating of PV modules [Google Scholar]
  44. U. Zeller et al., Digitalization in PV–virtual application of real weather data on PV modules for lifetime prediction, in EUPVSEC, 2018 [Google Scholar]
  45. M. Koehl, Modeling of the nominal operating cell temperature based on outdoor weathering, Sol. Energy Mater. Sol. Cells 95, 1638 (2011) [CrossRef] [Google Scholar]
  46. Ph. Hülsmann, M. Heck, M. Köhl, Simulation of water vapor ingress into PV-modules under different climatic conditions, J. Mater. 2013.102691 (2013) [Google Scholar]
  47. M. Pander, Forecasting potential power/energy yield loss due to LeTID susceptible modules, in PV Symposium Bad Staffelstein, 2019 [Google Scholar]
  48. K. Naveršnik, R. Jurečič, Humidity-corrected Arrhenius equation: the reference condition approach, Int. J. Pharm. 500, 360 (2016) [CrossRef] [Google Scholar]
  49. IEC 63126 project webpage:,FSP_APEX_PAGE,FSP_PROJECT_ID: 1276,23,112692 [Google Scholar]
  50. B. Adothu, Identification and investigation of materials degradation in photovoltaic modules from middle east hot desert, in EUPVSEC, 2023 [Google Scholar]
  51. S. Kumar, Defects and degradations in PV modules from hot Middle East deserts, in EUPVSEC, 2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.