Issue
EPJ Photovolt.
Volume 13, 2022
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
Article Number 22
Number of page(s) 8
Section High Efficiency Materials and Devices - New concepts
DOI https://doi.org/10.1051/epjpv/2022020
Published online 14 October 2022
  1. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n Junction solar cells, J. Appl. Phys. 32 , 510 (1961) [CrossRef] [Google Scholar]
  2. M. Yamaguchi, F. Dimroth, J.F. Geisz, N.J. Ekins-Daukes, Multi-junction solar cells paving the way for super high-efficiency, J. Appl. Phys. 129 , 240901 (2021) [CrossRef] [Google Scholar]
  3. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Solar cell efficiency tables (version 60), Prog. Photovolt. 30 , 687 (2022) [CrossRef] [Google Scholar]
  4. A. Goetzberger, J. Luther, G. Willeke, Solar cells: past, present, future, Solar Energy Mater. Solar Cells 74 , 1 (2002) [CrossRef] [Google Scholar]
  5. M. Yamaguchi, K-H. Lee, K. Araki, N. Kojima, A review of recent progress in heterogeneous silicon tandem solar cells, J. Phys. D: Appl. Phys. 51 , 133002 (2018) [CrossRef] [Google Scholar]
  6. U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells, Phys. Rev. B 76 , 085303 (2007) [CrossRef] [Google Scholar]
  7. M.A. Green, Radiative efficiency of state-of-the-art photovoltaic cells, Prog. Photovol. 20 , 472 (2012) [CrossRef] [Google Scholar]
  8. J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong, Z. He, H. Wu, J. Troughton, T. Watson, D. Bryant, J. Nelson, Quantifying losses in open-circuit voltage in solution- processable solar cells, J. Phys. Rev. Appl. 4 , 014020 (2015) [CrossRef] [Google Scholar]
  9. M. Yamaguchi, H. Yamada, Y. Katsumata, K-H. Lee, K. Araki, N. Kojima, Efficiency potential and recent activities of high-efficiency solar cells, J. Mater. Res. 32 , 3446 (2017) [Google Scholar]
  10. M. Yamaguchi, K.H. Lee, K. Araki, N. Kojima, H. Yamada, Y. Katsumata, Analysis for efficiency potential of high‐efficiency and next generation solar cells, Prog. Photovolt. 26 , 543 (2018) [CrossRef] [Google Scholar]
  11. M. Yamaguchi, K-H. Lee, P. Schygulla, F. Dimroth, T. Takamoto, R. Ozaki, K. Nakamura, N. Kojima, Y. Ohshita, Approaches for high-efficiency III-V/Si tandem solar cells, Energy Power Eng. 13 , 413 (2021) [CrossRef] [Google Scholar]
  12. M.A. Green, Solar Cells (UNSW, Kensington, 1998), p. 96 [Google Scholar]
  13. R.M. France, J.F. Geisz, T. Song, W. Olavarria, M. Young, A. Kibbler, M.A. Steiner, Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices, Joule 6 , 1121 (2022) [CrossRef] [Google Scholar]
  14. B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% conversion efficiency: a new record for single-junction solar cells under 1 sun illumination, in Proceedings of the 37th IEEE Photovoltaic Conference (IEEE, New York, 2011), p. 4 [Google Scholar]
  15. J.F. Geisz, M.A. Steiner, I. García, S.R. Kurtz, D.J. Friedman, Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells, Appl. Phys. Lett. 103 , 041118 (2013) [CrossRef] [Google Scholar]
  16. J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Six-junction III-V solar cells with 47.1% conversion efficiency under 143 suns concentration, Nat. Energy 5 , 326 (2020) [CrossRef] [Google Scholar]
  17. K. Ando, C. Amano, H. Sugiura, M. Yamaguchi, A. Saletes, Nonradiative e-h recombination charateristics of mid-gap eletron trap in Al x Ga1-x As (x = 0.4) grown by MBE, Jpn J. Appl. Phys. 26 , L266 (1987) [CrossRef] [Google Scholar]
  18. M.A. Steiner, R.M. France, J. Buencuerpo, J.F. Geisz, M.P. Nielsen, A. Pusch, W.J. Olavarria, M. Young, N.J. Ekins-Daukes, High efficiency inverted GaAs and GaInP/GaAs solar cells with strain-balanced GaInAs/GaAsP quantum wells, Adv. Energy Mater. 11 , 2002874 (2021) [CrossRef] [Google Scholar]
  19. P.T. Chiu, D.C. Law, R.L. Woo, S.B. Singer, D. Bhusari, W.D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R.R. King, N.H. Karam, 35.8% space and 38.8% terrestrial 5J direct bonded cells, in Proceedings of the 40th IEEE Photovoltaic Specialist Conference (IEEE, New York, 2014), pp. 0011–0013 [Google Scholar]
  20. S. Essig, C. Allebe, T. Remo, J.F. Geisz, M.A. Steiner, K. Horowitz, L. Barraud, J.S. Ward, M. Schnabel, A. Descoeudres, D.L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboil, Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Energy 2, 17144 (2017) [CrossRef] [Google Scholar]
  21. P. Schygulla, R. Müller, D. Lackner, O. Höhn, H. Hauser, B. Bläsi, F. Predan, J. Benick, M. Hermle, S.W. Glunz, F. Dimroth, Two-terminal III-V//Si triple-junction solar cell with power conversion efficiency of 35.9% atAM1. 5g, Prog. Photovolt. 30, 869 (2022) [CrossRef] [Google Scholar]
  22. P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger, D. Yoo, F. Lang, M. Grischek, B. Li, A. Al-Ashouri, E. Köhnen, M. Stolterfoht, D. Neher, R. Schlatmann, B. Rech, B. Stannowski, S. Albrecht, C. Becker, Nano-optical designs enhance monolithic perovskite/silicon tandem solar cells toward 29.8% efficiency, Res. Square, https://doi.org/10.21203/rs.3.rs-1439562/v1 [Google Scholar]
  23. C. Amano, H. Sugiura, K. Ando, M. Yamaguchi, High-efficiency Al0.3Ga0.7As solar cells grown by molecular beam epitaxy, Appl. Phys. Lett. 51, 1075 (1987) [CrossRef] [Google Scholar]
  24. K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto, Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells, AIP Conf. Proc. 1556, 22 (2013) [Google Scholar]
  25. D.V. Lang, R.A. Logan, M. Jaros, Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs, Phys. Rev. B 19, 1015 (1979) [CrossRef] [Google Scholar]
  26. P.M. Mooney, Deep donor levels (DX centers) in III-V semiconductors, J. Appl. Phys. 67 , R1 (1990) [CrossRef] [Google Scholar]
  27. A. Cavallini, B. Fraboni, F. Capotondi, L. Sorba, G. Biasiol, Deep levels in MBE grown AlGaAs/GaAs heterostructures, Microelectr. Eng. 73–74, 954 (2004) [CrossRef] [Google Scholar]
  28. N. Mundhaas, Z.J. Yu, K.A. Bush, H-P. Wang, J. Häusele, S. Kavadiya, M.D. McGehee, Z.C. Holman, Series resistance measurements of perovskite solar cells using JscVoc measurements, Solar RRL 3, 1800378 (2019) [CrossRef] [Google Scholar]
  29. C. McDonald, H. Sai, V. Svrcek, A. Kogo, T. Miyadera, T.N. Murakami, M. Chikamatsu, Y. Yoshida, T. Matsui, In situ grown nanocrystalline Si recombination junction layers for efficient perovskite−Si monolithic tandem solar cells: Toward a simpler multijunction architecture, ACS Appl. Mater. Interfaces 14, 33505 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.