Open Access
EPJ Photovolt.
Volume 13, 2022
Article Number 21
Number of page(s) 8
Section Modules and Systems
Published online 07 September 2022
  1. World Energy Balances, Overview, International Energy Agency. (2019), Available online: [Google Scholar]
  2. A. Benamor, M. Nasser, M.J. Al-Marri, Gas processing technology-treatment and utilization, in Encyclopedia of Sustainable Technologies (Elsevier, 2017), pp. 359–387 [CrossRef] [Google Scholar]
  3. A.E. Gürel, Ü. Ağbulut, A. Ergün, İ. Ceylan, Environmental and economic assessment of a low energy consumption household refrigerator, Eng. Sci. Technol. Int. J. 23 , 365 (2020) [Google Scholar]
  4. A. Detollenaere, J. Van Wetter, G. Masson, I. Kaizuka, A. Jäger-Waldau, J. Donoso, Snapshot of global PV markets 2021 task 1 strategic PV analysis and outreach, Int. Energy Agency (IEV PVPS), Report IEA-PVPS T1-39:2021, April 2021 [Google Scholar]
  5. A. Jäger-Waldau, Snapshot of photovoltaics − March 2021, EPJ Photovolt. 12 , 2 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Saïd Ba, The energy policy of the Republic of Senegal: Evaluation and Perspectives (2018), [Google Scholar]
  7. M.S. Drame, D. Diop, K. Talla, M. Diallo, B.D. Ngom, B. Nebon, Structural and physicochemical properties of dust collected on PV panels surfaces and their potential influence on these solar modules efficiency in Dakar, Senegal, West Africa, Sci. Afr. 12 , e00810 (2021) [Google Scholar]
  8. L.R. Drees, A. Manu, L.P. Wilding, Characteristics of aeolian dusts in Niger, West Africa, Geoderma 59 , 213 (1993) [CrossRef] [Google Scholar]
  9. M.C. Todd, C. Cavazos-Guerra, Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations, Atmos. Environ. 128 , 147 (2016) [CrossRef] [Google Scholar]
  10. S. Caquineau, Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions, J. Geophys. Res. 107 , 4251 (2002) [CrossRef] [Google Scholar]
  11. A. Ndiaye, C.M.F. Kébé, P.A. Ndiaye, A. Charki, A. Kobi, V. Sambou, Impact of dust on the photovoltaic (PV) modules characteristics after an exposition year in Sahelian environment: The case of Senegal, Int. J. Phys. Sci. 8, 1166 (2013) [Google Scholar]
  12. K.M. Panidhara, P.C. Ramamurthy, Development of low power laser in-situ thickness measurement for correlating the dust thickness to the PV performance, Clean. Eng. Technol. 5 , 100332 (2021) [CrossRef] [Google Scholar]
  13. A. Azouzoute et al., Modeling and experimental investigation of dust effect on glass cover PV module with fixed and tracking system under semi-arid climate, Sol. Energy Mater. Sol. Cells 230 , 111219 (2021) [CrossRef] [Google Scholar]
  14. E. Urrejola et al., Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile, Energy Convers. Manag. 114 , 338 (2016) [CrossRef] [Google Scholar]
  15. Y. Chen et al., Experimental study on the effect of dust deposition on photovoltaic panels, Energy Proc. 158 , 483 (2019) [CrossRef] [Google Scholar]
  16. Y. Guan, H. Zhang, B. Xiao, Z. Zhou, X. Yan, In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules, Renew. Energy 101 , 1273 (2017) [CrossRef] [Google Scholar]
  17. A. Gholami, I. Khazaee, S. Eslami, M. Zandi, E. Akrami, Experimental investigation of dust deposition effects on photo-voltaic output performance, Sol. Energy 159 , 346 (2018) [CrossRef] [Google Scholar]
  18. M. Al-Addous, Z. Dalala, F. Alawneh, C.B. Class, Modeling and quantifying dust accumulation impact on PV module performance, Sol. Energy 194 , 86 (2019) [CrossRef] [Google Scholar]
  19. B. Zhao, S. Zhang, S. Cao, Q. Zhao, Cleaning cycle optimization and cost evaluation of module dust for photovoltaic power plants in China, Clean Technol. Environ. Policy 21 , 1645 (2019) [CrossRef] [Google Scholar]
  20. K. Chiteka, R. Arora, S.N. Sridhara, C.C. Enweremadu, A novel approach to Solar PV cleaning frequency optimization for soiling mitigation, Sci. Afr. 8 , e00459 (2020) [Google Scholar]
  21. L.L. Jiang, Modeling and optimization of photovoltaic systems under partially shaded and rapidly changing conditions, Doctoral Thesis, Nanyang Technological University, 2014 [Google Scholar]
  22. B. Hammad, M. Al-Abed, A. Al-Ghandoor, A. Al-Sardeah, A. Al-Bashir, Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study, Renew. Sustain. Energy Rev. 82 , 2218 (2018) [CrossRef] [Google Scholar]
  23. W. Al-Kouz, S. Al-Dahidi, B. Hammad, M. Al-Abed, Modeling and analysis framework for investigating the impact of dust and temperature on PV systems performance and optimum cleaning frequency, Appl. Sci. 9 , 1397 (2019) [CrossRef] [Google Scholar]
  24. K. Kunaifi, A. Reinders, S. Lindig, M. Jaeger, D. Moser, Operational performance and degradation of PV systems consisting of six technologies in three climates, Appl. Sci. 10 , 5412 (2020) [CrossRef] [Google Scholar]
  25. B. Marion et al., Performance parameters for grid-connected PV systems, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, Lake buena Vista, FL, USA, (2005), pp. 1601–1606 [Google Scholar]
  26. T. Dierauf, A. Growitz, S. Kurtz, J.L.B. Cruz, E. Riley, C. Hansen, Weather-Corrected Performance Ratio, NREL/TP-5200–57991, 1078057 (2013) [Google Scholar]
  27. M.G. Deceglie, M. Muller, Z. Defreitas, S. Kurtz, A scalable method for extracting soiling rates from PV production data, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA (2016), pp. 2061–2065 [Google Scholar]
  28. A. Skomedal, H. Haug, E.S. Marstein, Endogenous soiling rate determination and detection of cleaning events in utility-scale PV plants, IEEE J. Photovolt. 9 , 858 (2019) [CrossRef] [Google Scholar]
  29. B. Guo, W. Javed, B.W. Figgis, T. Mirza, Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar, in 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar (2015), pp. 1–6 [Google Scholar]
  30. X. Wang, Q. Yu, Unbiasedness of the Theil–Sen estimator, J. Nonparametric Stat. 17 , 685 (2005) [Google Scholar]
  31. K. Ilse et al., Techno-economic assessment of soiling losses and mitigation strategies for solar power generation, Joule 3 , 2303 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.