Issue |
EPJ Photovolt.
Volume 13, 2022
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 8 | |
Section | High Efficiency Materials and Devices - New concepts | |
DOI | https://doi.org/10.1051/epjpv/2022020 | |
Published online | 14 October 2022 |
https://doi.org/10.1051/epjpv/2022020
Regular Article
Overview and loss analysis of III–V single-junction and multi-junction solar cells
1
Toyota Technological Institute, Nagoya 468-8511, Japan
2
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg 79110, Germany
3
University of New South Wales, Sydney 2052, Australia
* e-mail: masafumi@toyota-ti.ac.jp
Received:
2
June
2022
Received in final form:
26
July
2022
Accepted:
29
August
2022
Published online: 14 October 2022
The development of high-performance solar cells offers a promising pathway toward achieving high power per unit cost for many applications. Because state-of-the-art efficiencies of single-junction solar cells are approaching the Shockley-Queisser limit, the multi-junction (MJ) solar cells are very attractive for high-efficiency solar cells. This paper reviews progress in III–V compound single-junction and MJ solar cells. In addition, analytical results for efficiency potential and non-radiative recombination and resistance losses in III–V compound single-junction and MJ solar cells are presented for further understanding and decreasing major losses in III–V compound materials and MJ solar cells. GaAs single-junction, III–V 2-junction and III–V 3-junction solar cells are shown to have potential efficiencies of 30%, 37% and 47%, respectively. Although in initial stage of developments, GaAs single-junction and III–V MJ solar cells have shown low ERE values, ERE values have been improved as a result of several technology development such as device structure and material quality developments. In the case of III–V MJ solar cells, improvements in ERE of sub-cells are shown to be necessary for further improvements in efficiencies of MJ solar cells.
Key words: High-efficiency / singe-junction solar cells / multi-junction solar cells / loss analysis
© M. Yamaguchi et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.