Open Access
Issue
EPJ Photovolt.
Volume 13, 2022
Article Number 23
Number of page(s) 11
Section High Efficiency Materials and Devices - New concepts
DOI https://doi.org/10.1051/epjpv/2022021
Published online 18 October 2022
  1. Fraunhofer ISE, Photovoltaics Report, Tech. Rep. (2021). https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf [Google Scholar]
  2. Joint Research Centre, Photovoltaics Technology Development Report 2020 (2020). https://doi.org/10.2760/827685 [Google Scholar]
  3. P. Perez-Rodriguez, W. Vijselaar, J. Huskens, M. Stam, M. Falkenberg, M. Zeman, W. Smith, A.H. Smets, Designing a hybrid thin-film/wafer silicon triple photovoltaic junction for solar water splitting, Prog. Photovolt.: Res. Appl. 27, 245 (2019) [CrossRef] [Google Scholar]
  4. S. Kirner, H. Sarajan, A. Azarpira, T. Schedel-Niedrig, B. Stannowski, B. Rech, R. Schlatmann, Wafer surface tuning for a-Si:H/mc-Si:H/c-Si triple junction solar cells for application in water splitting, Energy Procedia 102, 126 (2016) [CrossRef] [Google Scholar]
  5. T. de Vrijer, S. Miedema, T. Blackstone, D. van Nijen, C. Han, A.H.M. Smets, Application of metal, metal-oxide and silicon-oxide based intermediate reflective layers for current matching in autonomous high voltage multijunction photovoltaic devices, Progr. Photovolt.: Res. Appl. (2022). https://doi.org/10.1002/pip.3600 [Google Scholar]
  6. A. Blanker, P. Berendsen, N. Phung, Z. Vroon, M. Zeman, A. Smets, Advanced light management techniques for two-terminal hybrid tandem solar cells, Solar Energy Mater. Solar Cells 181, 77 (2018) [CrossRef] [Google Scholar]
  7. M. Jošt, E. Köhnen, A.B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, S. Albrecht, Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield, Energy Environ. Sci. 11, 3511 (2018) [CrossRef] [Google Scholar]
  8. M. Lozac’h, S. Nunomura, K. Matsubara, Double-sided TOPCon solar cells on textured wafer with ALD SiOX layer, Solar Energy Mater. Solar Cells 207, 110357 (2020) [CrossRef] [Google Scholar]
  9. M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, Relation between substrate surface morphology and microcrystalline silicon solar cell performance, J. Non-Cryst. Solids 354, 2258 (2008) [CrossRef] [Google Scholar]
  10. H. Sai, K. Saito, N. Hozuki, M. Kondo, Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells, Appl. Phys. Lett. 102, 053509 (2013) [CrossRef] [Google Scholar]
  11. H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, M. Kondo, Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide, Appl. Phys. Express 6, 104101 (2013) [CrossRef] [Google Scholar]
  12. T. de Vrijer, A.H.M. Smets, Advanced textured monocrystalline silicon substrates with high optical scattering yields and low electrical recombination losses for supporting crack-free nano- to poly-crystalline film growth, Energy Sci. Eng. 9, 1080 (2021) [CrossRef] [Google Scholar]
  13. H. Sai, K. Saito, M. Kondo, Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays, Appl. Phys. Lett. 101, 173901 (2012) [CrossRef] [Google Scholar]
  14. T. de Vrijer, D. van Nijen, H. Parasramka, P.A. Procel Moya, Y. Zhao, O. Isabella, A.H. M Smets, The fundamental operation mechanisms of nc-SiOX < 0:H based tunnel recombination junctions revealed, Solar Energy Mater. Solar Cells 236, 111501 (2022) [CrossRef] [Google Scholar]
  15. T. de Vrijer, H. Parasramka, S.J. Roerink, A.H. Smets, An expedient semi-empirical modelling approach for optimal bandgap profiling of stoichiometric absorbers: a case study of thin film amorphous silicon germanium for use in multijunction photovoltaic devices, Solar Energy Mater. Solar Cells 225, 111051 (2021) [CrossRef] [Google Scholar]
  16. K. Jäger, O. Isabella, L. Zhao, M. Zeman, Light scattering properties of surface-textured substrates, Phys. Stat. Solidi 7, 945 (2010) [Google Scholar]
  17. G. Yang, R.A. van Swaaij, H. Tan, O. Isabella, M. Zeman, Modulated surface textured glass as substrate for high efficiency microcrystalline silicon solar cells, Solar Energy Mater. Solar Cells 133, 156 [Google Scholar]
  18. K. Jäger, O. Isabella, R.A.C.M.M. van Swaaij, M. Zeman, Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range, Measur. Sci. Technol. 22, 105601 (2011) [CrossRef] [Google Scholar]
  19. T. de Vrijer, A. Ravichandran, B. Bouazzata, A.H.M. Smets, The impact of processing conditions and post-deposition oxidation on the opto-electrical properties of hydrogenated amorphous and nano-crystalline Germanium films, J. Non-Cryst. Solids 553, 120507 (2021) [CrossRef] [Google Scholar]
  20. S. Periasamy, S. Venkidusamy, R. Venkatesan, J. Mayandi, J. Pearce, J.H. Selj, R. Veerabahu, Micro-Raman scattering of nanoscale silicon in amorphous and porous silicon, Zeitsch. Phys. Chem. 231, 1585 (2017) [Google Scholar]
  21. W.S. Yoo, T. Ishigaki, T. Ueda, K. Kang, N.Y. Kwak, D.S. Sheen, S.S. Kim, M.S. Ko, W.S. Shin, B.S. Lee, S.J. Yeom, S.K. Park, Grain size monitoring of 3D flash memory channel poly-Si using multiwavelength Raman spectroscopy, in 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), IEEE (2014), pp. 1–4 [Google Scholar]
  22. T. de Vrijer, B. Bouazzata, A.H. M Smets, Spectroscopic review of hydrogenated, carbonated and oxygenated group IV alloys, Vibrat. Spectr. 121, 103387 (2022) [CrossRef] [Google Scholar]
  23. R.B. Iverson, R. Reif, Stochastic model for grain size versus dose in implanted and annealed polycrystalline silicon films on SiO2, J. Appl. Phys. 57, 5169 (1985) [CrossRef] [Google Scholar]
  24. Y. Wada, S. Nishimatsu, Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon, J. Electrochem. Soc. 125, 1499 (1978) [CrossRef] [Google Scholar]
  25. L. Mei, M. Rivier, Y. Kwark, R.W. Dutton, Grain-growth mechanisms in polysilicon, J. Electrochem. Soc. 129, 1791 (1982) [CrossRef] [Google Scholar]
  26. W.K. Hofker, D.P. Oosthoek, N.J. Koeman, H.A.M. de grefte, Concentration profiles of boron implantations in amorphous and polycrystalline silicon, Radiat. Effects 24, 223 (1975) [CrossRef] [Google Scholar]
  27. K. Suzuki, Y. Tada, Y. Kataoka, T. Nagayama, Monte Carlo simulation of ion implantation profiles calibrated for various ions over wide energy range, J. Semicond. Technol. Sci. 9, 67 (2009) [CrossRef] [Google Scholar]
  28. E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, V. Moagar Poladian, Optimization of front surface texturing processes for high-efficiency silicon solar cells, Solar Energy Mater. Solar Cells 87, 423 (2005) [CrossRef] [Google Scholar]
  29. H. Sai, K. Maejima, T. Matsui, T. Koida, M. Kondo, S. Nakao, Y. Takeuchi, H. Katayama, I. Yoshida, High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition, Jpn. J. Appl. Phys. 54, 08KB05 (2015) [CrossRef] [Google Scholar]
  30. R. Santbergen, T. Meguro, T. Suezaki, G. Koizumi, K. Yamamoto, M. Zeman, GenPro4 optical model for solar cell simulation and its application to multijunction solar cells, IEEE J. Photovolt. 7, 919 (2017) [CrossRef] [Google Scholar]
  31. M. Fischer, H. Tan, J. Melskens, R. Vasudevan, M. Zeman, A.H.M. Smets, High pressure processing of hydrogenated amorphous silicon solar cells: relation between nanostructure and high open-circuit voltage, Appl. Phys. Lett. 106, 043905 (2015) [CrossRef] [Google Scholar]
  32. T. de Vrijer, B. Bouazzata, A. Ravichandran, J. van Dingen, P. Roelandschap, K. Roodenburg, S. Roerink, F. Saitta, T. Blackstone, A.H.M. Smets, Opto-electrical properties of group IV alloys: the inherent challenges of processing hydrogenated germanium, Adv. Sci. 9, 2200814 (2022) [CrossRef] [Google Scholar]
  33. H.B. Li, R.H. Franken, J.K. Rath, R.E. Schropp, Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n–i–p solar cells, Solar Energy Mater. Solar Cells 93, 338 (2009) [CrossRef] [Google Scholar]
  34. H. Sai, K. Maejima, T. Matsui, T. Koida, K. Matsubara, M. Kondo, Y. Takeuchi, S. Sugiyama, H. Katayama, I. Yoshida, Impact of front TCO layer in substrate-type thin-film microcrystalline silicon solar cells, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015), pp. 1–6 [Google Scholar]
  35. H. Tan, E. Moulin, F.T. Si, J.-W. Schüttauf, M. Stuckelberger, O. Isabella, F.-J. Haug, C. Ballif, M. Zeman, A.H.M. Smets, Highly transparent modulated surface textured front electrodes for high-efficiency multijunction thin-film silicon solar cells, Progr. Photovolt.: Res. Appl. 23, 949 (2015) [CrossRef] [Google Scholar]
  36. H. Sai, T. Matsui, K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell, Appl. Phys. Lett. 109, 183506 (2016) [CrossRef] [Google Scholar]
  37. D.Y. Kim, E. Guijt, F.T. Si, R. Santbergen, J. Holovský, O. Isabella, R.A. van Swaaij, M. Zeman, Fabrication of double- and triple-junction solar cells with hydrogenated amorphous silicon oxide (a-SiOX:H) top cell, Solar Energy Mater. Solar Cells 141, 148 (2015) [CrossRef] [Google Scholar]
  38. J.-W. Schüttauf, B. Niesen, L. Löfgren, M. Bonnet-Eymard, M. Stuckelberger, S. Hänni, M. Boccard, G. Bugnon, M. Despeisse, F.-J. Haug, F. Meillaud, C. Ballif, Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells, Solar Energy Mater. Solar Cells 133, 163 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.