Issue
EPJ Photovolt.
Volume 13, 2022
Special Issue on ‘Recent Advances in Spectroscopy and Microscopy of Thin-films Materials, Interfaces, and Solar Cells 2021', edited by A. Vossier, M. Gueunier-Farret, J.-P. Kleider and D. Mencaraglia
Article Number 20
Number of page(s) 12
Section Modelling
DOI https://doi.org/10.1051/epjpv/2022018
Published online 06 September 2022
  1. L. Weiss, M. Amara, C. Ménézo, Impact of radiative-heat transfer on photovoltaic module temperature, Progr. Photovolt.: Res. Appl. 24 , 12–27 (2016) [CrossRef] [Google Scholar]
  2. A. Ndiaye, A. Charki, A. Kobi, C.M.F. Kébé, P.A. Ndiaye, V. Sambou, Degradations of silicon photovoltaic modules: a literature review, Solar Energy 96 , 140–151 (2013) [CrossRef] [Google Scholar]
  3. A. Virtuani, D. Pavanello, G. Friesen, Overview of temperature coefficients of different thin film photovoltaic technologies, in Proc. 25th Eur. Photovoltaic Sol. Energy Conf. Exhib. (2010), pp. 4248–4252 [Google Scholar]
  4. J. Haschke, J.P. Seif, Y. Riesen, A. Tomasi, J. Cattin, L. Tous, P. Choulat, M. Aleman, E. Cornagliotti, A. Uruena, R. Russell, F. Duerinckx, J. Champliaud, J. Levrat, A.A. Abdallah, B. Aïssa, N. Tabet, N. Wyrsch, M. Despeisse, J. Szlufcik, S. De Wolf, C. Ballif, The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates, Energy Environ. Sci. 10 , 1196–1206 (2017) [CrossRef] [Google Scholar]
  5. L. Xu, W. Liu, H. Liu, C. Ke, M. Wang, C. Zhang, E. Aydin, M. Al-Aswad, K. Kotsovos, I. Gereige, A. Al-Saggaf, A. Jamal, X. Yang, P. Wang, F. Laquai, T.G. Allen, S. De Wolf, Heat generation and mitigation in silicon solar cells and modules, Joule 5 , 631–645 (2021) [CrossRef] [Google Scholar]
  6. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Solar Energy 83 , 614–624 (2009) [CrossRef] [Google Scholar]
  7. A.D. Jones, C.P. Underwood, A thermal model for photovoltaic systems, Solar Energy 70 , 349–359 (2001) [CrossRef] [Google Scholar]
  8. O. Dupré, R. Vaillon, M.A. Green, A full thermal model for photovoltaic devices, Solar Energy 140 , 73–82 (2016) [CrossRef] [Google Scholar]
  9. W. Gu, T. Ma, M. Li, L. Shen, Y, Zhang, A coupled optical-electrical-thermal model of the bifacial photovoltaic module, Appl. Energy 258 , 114075 (2020) [CrossRef] [Google Scholar]
  10. R. Vaillon, L. Robin, C. Muresan, C. Ménézo, Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell, Int. J. Heat Mass Transfer 49 , 4454–4468 (2006) [CrossRef] [Google Scholar]
  11. U. Lindefelt, Heat generation in semiconductor devices, J. Appl. Phys. 75 , 942–957 (1994) [CrossRef] [Google Scholar]
  12. R. Couderc, M. Amara, M. Lemiti, In-depth analysis of heat generation in silicon solar cells, IEEE J. Photovolt. 6 , 1123–1131 (2016) [CrossRef] [Google Scholar]
  13. A. Shang, X. Li, Photovoltaic devices: opto-electro-thermal physics and modeling, Adv. Mater. 29 , 1–8 (2017) [Google Scholar]
  14. P. Saxena, N.E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical-electrical-thermal 3-D analysis, IEEE J. Photovolt. 9 , 1693–1698 (2019) [CrossRef] [Google Scholar]
  15. S. Zandi, M. Jamshidi Seresht, A. Khan, N.E. Gorji, Simulation of heat loss in Cu2ZnSn4SxSe4x thin film solar cells: A coupled optical-electrical-thermal modeling, Renew. Energy 181 , 320–328 (2022) [CrossRef] [Google Scholar]
  16. A. Fell, K.R. McIntosh, P.P. Altermatt, G.J.M. Janssen, R. Stangl, A. Ho-Baillie, H. Steinkemper, J. Greulich, M. Muller, B. Min, K.C. Fong, M. Hermle, I.G. Romijn, M.D. Abbott, Input parameters for the simulation of silicon solar cells in 2014, IEEE J. Photovolt. 5 , 1250–1263 (2015) [CrossRef] [Google Scholar]
  17. D.B.M. Klaassen, A unified mobility model for device simulation—I. Model equations and concentration dependence, Solid-State Electr. 35 , 953–959 (1992) [CrossRef] [Google Scholar]
  18. D.A. Clugston, P.A. Basore, PC1D version 5: 32-bit solar cell modeling on personal computers, in Conference Record of the IEEE Photovoltaic Specialists Conference (1997), pp. 207–210 [Google Scholar]
  19. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 , 527–532 (2000) [CrossRef] [Google Scholar]
  20. M. Lundstrom, C. Jeong, Near-equilibrium Transport: Fundamentals and Applications (World Scientific, 2012) [Google Scholar]
  21. M.R. Vogt, H. Holst, M. Winter, R. Brendel, P.P. Altermatt, Numerical modeling of c-Si PV modules by coupling the semiconductor with the thermal conduction, convection and radiation equations, Energy Proc. 77 , 215–224 (2015) [CrossRef] [Google Scholar]
  22. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. MacHulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. Ted Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride, Appl. Opt. 51 , 6789–6798 (2012) [CrossRef] [PubMed] [Google Scholar]
  23. M. Von Arx, O. Paul, H. Baltes, Process-dependent thin-film thermal conductivities for thermal CMOS MEMS, J. Microelectromech. Syst. 9 , 136–145 (2000) [CrossRef] [Google Scholar]
  24. M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients, Solar Energy Mater. Solar Cells 92 , 1305–1310 (2008) [CrossRef] [Google Scholar]
  25. C.J. Fu, Z.M. Zhang, Nanoscale radiation heat transfer for silicon at different doping levels, Int. J. Heat Mass Transfer 49 , 1703–1718 (2006) [CrossRef] [Google Scholar]
  26. C.J. Glassbrenner, G.A. Slack, Thermal conductivity of silicon and germanium from 3°K to the melting point, Phys. Rev. 134 , A1058 (1964) [CrossRef] [Google Scholar]
  27. H. Straube, J. Martin Wagner, O. Breitenstein, Measurement of the Peltier coefficient of semiconductors by lock-in thermography, Appl. Phys. Lett. 95 , 5–8 (2009) [Google Scholar]
  28. R. Couderc, M. Amara, M. Lemiti, Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon, J. Appl. Phys. 115 , 093705 (2014) [Google Scholar]
  29. R. Pässler, Dispersion-related description of temperature dependencies of band gaps in semiconductors, Phys. Rev. B 66 , 1–18 (2002) [CrossRef] [Google Scholar]
  30. T. Niewelt, B. Steinhauser, A. Richter, B. Veith-Wolf, A. Fell, B. Hammann, N.E. Grant, L. Black, J. Tan, A. Youssef, J.D. Murphy, J. Schmidt, M.C. Schubert, S.W. Glunz, Reassessment of the intrinsic bulk recombination in crystalline silicon, Solar Energy Mater. Solar Cells 235 , 111467 (2022) [CrossRef] [Google Scholar]
  31. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37 , 5271 (1998) [CrossRef] [Google Scholar]
  32. J.M. Lugo, A.I. Oliva, Thermal properties of metallic films at room conditions by the heating slope, J. Thermophys. Heat Transfer 30 , 452–460 (2016) [CrossRef] [Google Scholar]
  33. S. Basu, B.J. Lee, Z.M. Zhang, Infrared radiative properties of heavily doped silicon at room temperature, J. Heat Transfer 132 , 1–8 (2010) [Google Scholar]
  34. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of heat and mass transfer, in Fluid Mechanics and its Applications (2015), Vol. 112, pp. 321–338 [CrossRef] [Google Scholar]
  35. E.A. Estalote, K.G. Ramanathan, Low-temperature emissivities of copper and aluminum, J. Opt. Soc. Am. 67 , 39 (1977) [CrossRef] [Google Scholar]
  36. M.A. Green, General temperature dependence of solar cell performance and implications for device modelling, Progr. Photovolt.: Res. Appl. 11 , 333–340 (2003) [CrossRef] [Google Scholar]
  37. S. Chander, A. Purohit, A. Sharma, Arvind, S.P. Nehra, M.S. Dhaka, A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature, Energy Rep. 1 , 104–109 (2015) [CrossRef] [Google Scholar]
  38. D.L. Evans, Simplified method for predicting photovoltaic array output, Solar Energy 27 , 555–560 (1981) [CrossRef] [Google Scholar]
  39. J. Brody, A. Rohatgi, V. Yelundur, Bulk resistivity optimization for low-bulk-lifetime silicon solar cells, Progr. Photovolt.: Res. Appl. 9 , 273–285 (2001) [CrossRef] [Google Scholar]
  40. C.A. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Solar Energy 71 , 325–346 (2001) [CrossRef] [Google Scholar]
  41. O. Dupré, R. Vaillon, M.A. Green, Physics of the temperature coefficients of solar cells, Solar Energy Mater. Solar Cells 140 , 92–100 (2015) [CrossRef] [Google Scholar]
  42. J. Dumoulin, E. Drouard, M. Amara, Radiative sky cooling of solar cells: fundamental modelling and cooling potential of single-junction devices, Sustain. Energy Fuels 5 , 2085–2096 (2021) [CrossRef] [Google Scholar]
  43. N. Dabaghzadeh, M. Eslami, Temperature distribution in a photovoltaic module at various mounting and wind conditions: a complete CFD modeling, J. Renew. Sustain. Energy 11 , 053503 (2019) [CrossRef] [Google Scholar]
  44. I. Marius Peters, T. Buonassisi, Energy yield limits for single-junction solar cells, Joule 2 , 1160–1170 (2018) [CrossRef] [Google Scholar]
  45. D. Alonso-Álvarez, T. Wilson, P. Pearce, M. Führer, D. Farrell, N. Ekins-Daukes, Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials, J. Comput. Electr. 17 , 1099–1123 (2018) [CrossRef] [Google Scholar]
  46. S. Dahal, J. Waddle, M. Nardone, Multi-scale simulation of thin-film photovoltaic devices, in 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 (2017), pp. 738–741 [Google Scholar]
  47. G.C.Y. Peng, M. Alber, A. Buganza Tepole, W.R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W.W. Lytton, P. Perdikaris, L. Petzold, E. Kuhl, Multiscale modeling meets machine learning: what can we learn? Arch. Comput. Methods Eng. 28 , 1017–1037 (2021) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.