Open Access
EPJ Photovolt.
Volume 13, 2022
Article Number 10
Number of page(s) 24
Section Modelling
Published online 25 May 2022
  1. T. Hargreaves, L. Middlemiss, The importance of social relations in shaping energy demand, Nat. Energy 5, 195 (2020) [CrossRef] [Google Scholar]
  2. K. Moustakas, M. Loizidou, M. Rehan, A.S. Nizami, A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective, Renew. Sustain. Energy Rev. 119, 109418 (2020) [CrossRef] [Google Scholar]
  3. J.C. de Oliveira Matias, R. Godina, E. Pouresmaeil, Sustainable energy systems: Optimization and efficiency, Appl. Sci. 10, 4405 (2020) [CrossRef] [Google Scholar]
  4. Y. Lu, Z.A. Khan, M.S. Alvarez-Alvarado, Y. Zhang, Z. Huang, M. Imran, A critical review of sustainable energy policies for the promotion of renewable energy sources, Sustainability 12, 5078 (2020) [CrossRef] [Google Scholar]
  5. P.A. Fokaides, R. Apanaviciene, J. Černeckiene, A. Jurelionis, E. Klumbyte, V. Kriauciunaite-Neklejonoviene, D. Pupeikis, D. Rekus, J. Sadauskiene, L. Seduikyte, L. Stasiuliene, J. Vaiciunas, R. Valancius, T. Ždankus, Research challenges and advancements in the field of sustainable energy technologies in the built environment, Sustainability 12, 8417 (2020) [CrossRef] [Google Scholar]
  6. A.S. Abdelrazik, K.H. Tan, N. Aslfattahi, A. Arifutzzaman, R. Saidur, F.A. Al-Sulaiman, Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems, Sol. Energy 204, 32 (2020) [CrossRef] [Google Scholar]
  7. T. Hooper, A. Armstrong, B. Vlaswinkel, Environmental impacts and benefits of marine floating solar, Sol. Energy 219, 11 (2021) [CrossRef] [Google Scholar]
  8. IEA Renewables 2020, IEA, Paris, (n.d.).(2020) [Google Scholar]
  9. V.R. Vakacharla, K. Gnana, P. Xuewei, B.L. Narasimaharaju, M. Bhukya, A. Banerjee, R. Sharma, A.K. Rathore, State-of-the-art power electronics systems for solar-to-grid integration, Sol. Energy 210, 128 (2020) [CrossRef] [Google Scholar]
  10. L. Al-Ghussain, R. Samu, O. Taylan, M. Fahrioglu, Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources, Sustain. Cities Soc. 55, 102059 (2020) [CrossRef] [Google Scholar]
  11. E. Kabalcı, Review on novel single-phase grid-connected solar inverters: circuits and control methods, Sol. Energy 198, 247 (2020) [CrossRef] [Google Scholar]
  12. P.K. Bonthagorla, S. Mikkili, Performance analysis of PV array configurations (SP, BL, HC and TT) to enhance maximum power under non‐uniform shading conditions, Eng. Rep. 2, e12214 (2020) [Google Scholar]
  13. A.A. Desai, S. Mikkili, Modelling and analysis of PV configurations (alternate TCT-BL, total cross tied, series, series parallel, bridge linked and honey comb) to extract maximum power under partial shading conditions, CSEE J. Power Energy Syst. PP (2020). [Google Scholar]
  14. C. Saiprakash, A. Mohapatra, B. Nayak, S.R. Ghatak, Analysis of partial shading effect on energy output of different solar PV array configurations, Mater. Today Proc. 39, 1905 (2021) [CrossRef] [Google Scholar]
  15. D.P. Winston, S. Kumaravel, B.P. Kumar, S. Devakirubakaran, Performance improvement of solar PV array topologies during various partial shading conditions, Sol. Energy 196, 228 (2020) [CrossRef] [Google Scholar]
  16. Manjunath, H.N. Suresh, S. Rajanna, Reduction of mislead power and mismatch power loss under partial shading conditions using novel square matrix shade dispersion technique, Sol. Energy 207, 1364 (2020) [CrossRef] [Google Scholar]
  17. S. Gallardo-Saavedra, L. Hernández-Callejo, M.D.C. Alonso-García, J. Muñoz-Cruzado-alba, J. Ballestín-Fuertes, Infrared thermography for the detection and characterization of photovoltaic defects: comparison between illumination and dark conditions, Sensors (Switzerland) 20, 4395 (2020) [CrossRef] [Google Scholar]
  18. L. Garcia-Gutierrez, M. Bressan, A. Sferlazza, F. Jimenez, S. De-Las-Heras, C. Alonso, Development of a high granularity photovoltaic model that considers complex nonuniform shadow conditions and different cell temperatures, in Electrimacs 2019 (Lecture Notes in Electrical Engineering, Vol. 697, Springer, 2020) pp. 35–47 [Google Scholar]
  19. A. Ghosh, Soiling losses: a barrier for india's energy security dependency from photovoltaic power, Challenges 11, 9 (2020) [CrossRef] [Google Scholar]
  20. M.H. Zafar, T. Al-Shahrani, N.M. Khan, A.F. Mirza, M. Mansoor, M.U. Qadir, M.I. Khan, R.A. Naqvi, Group teaching optimization algorithm based MPPT control of PV systems under partial shading and complex partial shading, Electronics 9, 1962 (2020) [CrossRef] [Google Scholar]
  21. R.G. Vieira, F.M.U. de Araújo, M. Dhimish, M.I.S. Guerra, A comprehensive review on bypass diode application on photovoltaic modules, Energies 13, 2472 (2020) [CrossRef] [Google Scholar]
  22. N. Agrawal, B. Bora, A. Kapoor, Experimental investigations of fault tolerance due to shading in photovoltaic modules with different interconnected solar cell networks, Sol. Energy 211, 1239 (2020) [CrossRef] [Google Scholar]
  23. R.K. Pachauri, O.P. Mahela, A. Sharma, J. Bai, Y.K. Chauhan, B. Khan, H.H. Alhelou, Impact of partial shading on various PV array configurations and different modeling approaches: a comprehensive review, IEEE Access. 8, 181375 (2020) [CrossRef] [Google Scholar]
  24. G. Meerimatha, B.L. Rao, Novel reconfiguration approach to reduce line losses of the photovoltaic array under various shading conditions, Energy 196, 117120 (2020) [CrossRef] [Google Scholar]
  25. Z. Wang, N. Zhou, L. Gong, M. Jiang, Quantitative estimation of mismatch losses in photovoltaic arrays under partial shading conditions, Optik (Stuttg) 203, 163950 (2020) [CrossRef] [Google Scholar]
  26. M.C. Alonso-García, J.M. Ruiz, W. Herrmann, Computer simulation of shading effects in photovoltaic arrays, Renew. Energy 31, 1986 (2006) [CrossRef] [Google Scholar]
  27. D.D. Nguyen, B. Lehman, Modeling and simulation of solar PV arrays under changing illumination conditions, in: Proc. IEEE Work. Comput. Power Electron. COMPEL, 2006. [Google Scholar]
  28. E. Karatepe, M. Boztepe, M. Çolak, Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells, Sol. Energy 81, 977 (2007) [CrossRef] [Google Scholar]
  29. V. Di Dio, D. La Cascia, R. Miceli, C. Rando, A mathematical model to determine the electrical energy production in photovoltaic fields under mismatch effect, in: 2009 Int. Conf. Clean Electr. Power, ICCEP 2009, 2009. [Google Scholar]
  30. R. Ramaprabha, B.L. Mathur, A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions, Int. J. Photoenergy. 2012, 120214 (2012) [CrossRef] [Google Scholar]
  31. Z. Salam, M.Z. Ramli, A simple circuit to improve the power yield of PV array during partial shading, in: 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012 (2012). [Google Scholar]
  32. F. Belhachat, C. Larbes, Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions, Sol. Energy 120, 399 (2015) [CrossRef] [Google Scholar]
  33. S. Mohammadnejad, A. Khalafi, S.M. Ahmadi, Mathematical analysis of total-cross-tied photovoltaic array under partial shading condition and its comparison with other configurations, Sol. Energy 133, 501 (2016) [CrossRef] [Google Scholar]
  34. S. Vijayalekshmy, G.R. Bindu, S.R. Iyer, Performance Improvement of Partially Shaded Photovoltaic Arrays under Moving Shadow Conditions through Shade Dispersion, J. Inst. Eng. Ser. B 97, 569 (2016) [CrossRef] [Google Scholar]
  35. S.R. Pendem, S. Mikkili, Modeling, simulation and performance analysis of solar PV array configurations (Series, Series-Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions, Energy Rep. 4, 274 (2018) [CrossRef] [Google Scholar]
  36. O. Bingöl, B. Özkaya, Analysis and comparison of different PV array configurations under partial shading conditions, Sol. Energy 160, 336 (2018) [CrossRef] [Google Scholar]
  37. S.R. Pendem, S. Mikkili, Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses, Sol. Energy 160, 303 (2018) [CrossRef] [Google Scholar]
  38. M. Premkumar, U. Subramaniam, T.S. Babu, R.M. Elavarasan, L. Mihet-Popa, Evaluation of mathematical model to characterize the performance of conventional and hybrid PV array topologies under static and dynamic shading patterns, Energies 13, 3216 (2020) [CrossRef] [Google Scholar]
  39. S.S. Reddy, C. Yammani, A novel Magic-Square puzzle based one-time PV reconfiguration technique to mitigate mismatch power loss under various partial shading conditions, Optik (Stuttg). 222, 165289 (2020) [CrossRef] [Google Scholar]
  40. C. Huang, L. Wang, H. Long, X. Luo, J.H. Wang, A hybrid global maximum power point tracking method for photovoltaic arrays under partial shading conditions, Optik (Stuttg). 180, 665 (2019) [CrossRef] [Google Scholar]
  41. Z. Wang, N. Zhou, L. Gong, M. Jiang, Quantitative estimation of mismatch losses in photovoltaic arrays under partial shading conditions, Optik (Stuttg). 203, 163950 (2020) [CrossRef] [Google Scholar]
  42. Z. Yang, K. Liao, J. Chen, L. Xia, X. Luo, Output performance analysis and power optimization of different configurations half-cell modules under partial shading, Optik (Stuttg). 232, 166499 (2021) [CrossRef] [Google Scholar]
  43. W. Kreft, M. Filipowicz, M. Żołądek, Reduction of electrical power loss in a photovoltaic chain in conditions of partial shading, Optik (Stuttg). 202, 163559 (2020) [CrossRef] [Google Scholar]
  44. R. Pachauri, R. Singh, A. Gehlot, R. Samakaria, S. Choudhury, Experimental analysis to extract maximum power from PV array reconfiguration under partial shading conditions, Eng. Sci. Technol. 22, 109 (2019) [Google Scholar]
  45. G.M. Madhu, C. Vyjayanthi, C.N. Modi, Investigation on effect of irradiance change in maximum power extraction from PV array interconnection schemes during partial shading conditions, IEEE Access 9, 96995 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.