Issue
EPJ Photovolt.
Volume 16, 2025
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
Article Number 23
Number of page(s) 13
DOI https://doi.org/10.1051/epjpv/2025010
Published online 06 May 2025
  1. M. Fischer, M. Woodhouse, P. Baliozian, International technology roadmap for photovoltaics IRTPV report. Technical Specification Fifteenth Edition, May 2024, VDMA, Frankfurt, GE (2024). https://www.vdma.org/international-technology-roadmap-photovoltaic [Google Scholar]
  2. U. Jahn, B. Herteleer, C. Tjengdrawira, I. Tsanakas, M. Richter, G. Dickeson, A. Astigarraga, T. Tanahashi, F. Valencia, M. Green, A. Anderson, B. Stridh, A. Lagunas, Y. Sangpongsanont, PVPS Task 13, Subtask 3: Guidelines for Operation and Maintenance of Photovoltaic Power Plants in Different Climates. Report, International Energy Agency (2022) [Google Scholar]
  3. A. Stiedl, C. Sas, C. Braun et al., Operation & Maintenance − Best practice guidelines. Best practice guidelines Version 6.0, Solar Power Europe (2025) [Google Scholar]
  4. W. Herrmann, G. Eder, B. Farnung, G. Friesen, M. Köntges, B. Kubicek, O. Kunz, H. Liu, D. Parlevliet, I. Tsanakas, J. Vedde, PVPS task 13: Performance, operation and reliability of photovoltaic systems − qualification of photovoltaic (PV) power plants using mobile test equipment. Report, International Energy Agency (2021) [Google Scholar]
  5. J. Kuo, S.-H. Chen, C.-Y. Huang, Automatic detection, classification and localization of defects in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB imaging, Energy Convers. Manag. 276, 116495 (2023). https://doi.org/10.1016/j.enconman.2022.116495 [Google Scholar]
  6. A. Fernández, R. Usamentiaga, P. de Arquer, M. Ángel Fernández, D. Fernández, J. Luis Carús, M. Fernández, Robust detection, classification and localization of defects in large photovoltaic plants based on unmanned aerial vehicles and infrared thermography, Appl. Sci. 10, 5948 (2020). https://doi.org/10.3390/app10175948 [Google Scholar]
  7. S. Lindig, S. Gallmetzer, M. Herz, A. Louwen, E. Koumpli, P.S. Enriquez Paez, D. Moser, Towards the development of an optimized Decision Support System for the PV industry: A comprehensive statistical and economical assessment of over 35,000 O&M tickets, Prog. Photovolt.: Res. Appl. 31, 1215 (2022). https://doi.org/10.1002/pip.3637 [Google Scholar]
  8. S. Gallmetzer, S. Lindig, M. Herz, D. Moser, Automated fixing cost estimation of photovoltaic system failures for the creation of a decision support system, Sol. RRL 7, 2300562 (2023). https://doi.org/10.1002/solr.202300562 [CrossRef] [Google Scholar]
  9. A. Ara, A. Lee, A. Sacco, A. Rahmati, A. Finch, Solarpower europe: O&m best practices guidelines version 5.0. Report, Solar Power Europe (2021). https://doi.org/10.1002/solr.202300562 [Google Scholar]
  10. N.R.E. Laboratory, Sandia National Laboratory, SunSpec Alliance, The S. National Laboratory Multiyear Partnership (SuNLaMP) PV Operation, and Maintenance Best Practices Working Group. Practices for Operation and Maintenance of Photovoltaic and Energy Storage Systems 3rd edition. Technical report, NREL (2018) [Google Scholar]
  11. G. Schirripa Spagnolo, P. Del Vecchio, G. Makary, D. Papalillo, A. Martocchia, A review of IR thermography applied to PV systems, in 2012 11th International Conference on Environment and Electrical Engineering (Venice, Italy, 2012). https://doi.org/10.1109/EEEIC.2012.6221500 [Google Scholar]
  12. IEC62446-3, Photovoltaic (PV) systems − requirements for testing, documentation and maintenance − part 3: Photovoltaic modules and plants − outdoor infrared thermography. Technical Specification IEC TS 62446-3:2017, International Electrotechnical Commission, Geneva, CH (2017). https://webstore.iec.ch/en/publication/28628 [Google Scholar]
  13. G. Álvarez-Tey, C. García-López, Strategy Based on Two Stages for IR Thermographic Inspections of Photovoltaic Plants, Appl. Sci. 12, 6331 (2022). https://doi.org/10.3390/app12136331 [Google Scholar]
  14. U. Jahn, M. Herz, M. Köntges, D. Parlevliet, M. Paggi, I. Tsanakas, J.S. Stein, K.A. Berger, S. Ranta, R.H. French, M. Richter, T. Tanahashi, Task 13: Review on infrared and electroluminescence imaging for PV field applications (2018) [Google Scholar]
  15. M. Aghaei, A. Gandelli, F. Grimaccia, S. Leva, R.E. Zich, Ir real-time analyses for pv system monitoring by digital image processing techniques, in 2015 International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP) (2015), pp. 1–6. https://doi.org/10.1109/EBCCSP.2015.7300708 [Google Scholar]
  16. M. Umair Ali, H. Farhaj Khan, M. Masud, K.D. Kallu, A. Zafar, A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography, Sol. Energy 208, 643 (2020). https://doi.org/10.1016/j.solener.2020.08.027 [CrossRef] [Google Scholar]
  17. V. Sinap, A. Kumtepe, Cnn-based automatic detection of photovoltaic solar module anomalies in infrared images: a comparative study, Neural Comput. Appl. 36, 1771 (2024). https://doi.org/10.1007/s00521-024-10322-y [Google Scholar]
  18. Z. Nichols, Test success for robot inspector, pv magazine, November (2024). https://www.pv-magazine.com/2024/01/11/test-success-for-robot-inspector/ [Google Scholar]
  19. Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, L. Wang, The dawn of LMMS: Preliminary explorations with gpt-4v, arXiv:2309.17421 (2023). https://doi.org/10.48550/arXiv.2309.17421 [Google Scholar]
  20. J. Wu, W. Gan, Z. Chen, S. Wan, P.S. Yu, Multimodal large language models: A survey, arXiv:2311.13165 (2023). https://doi.org/10.48550/arXiv.2311.13165 [Google Scholar]
  21. F. Hong, J. Song, H. Meng, R. Wang, F. Fang, G. Zhang, A novel framework on intelligent detection for module defects of PV plant combining the visible and infrared images, Sol. Energy 236, 406 (2022). https://doi.org/10.1016/j.solener.2022.03.018. [CrossRef] [Google Scholar]
  22. P. Karthikayan, V. Varshan, H. Kattamuri, U. Jayaraman, Explainable AI: Comparative analysis of normal and dilated resnet models for fundus disease classification, arXiv:2407.05440 (2024). https://doi.org/10.48550/arXiv.2407.05440 [Google Scholar]
  23. M. Köntges et al., Review of failures of photovoltaic modules, Report IEA-PVPS (2014) [Google Scholar]
  24. R.H.F. Alves, G.A. de Deus Júnior, E.G. Marra, R. Pinto Lemos, Automatic fault classification in photovoltaic modules using convolutional neural networks, Renew. Energy 179, 502 (2021). https://doi.org/10.1016/j.renene.2021.07.070 [CrossRef] [Google Scholar]
  25. L. Koester, S. Lindig, A. Louwen, A. Astigarraga, G. Manzolini, D. Moser, Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment, Renew. Sustain. Energy Rev. 165, 112616 (2022). https://doi.org/10.1016/j.rser.2022.112616 [CrossRef] [Google Scholar]
  26. Á.H. Herraiz, A. Pliego Marugán, F.P. García Márquez, Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure, Renew. Energy 153, 334 (2020). https://doi.org/10.1016/j.renene.2020.01.148 [CrossRef] [Google Scholar]
  27. C. Dunderdale, W. Brettenny, C. Clohessy, E. Van Dyk, Photovoltaic defect classification through thermal infrared imaging using a machine learning approach, Prog. Photovolt.: Res. Appl. 28, 12 (2019). https://doi.org/10.1002/pip.3191 [Google Scholar]
  28. G. Cipriani, A. D'Amico, S. Guarino, D. Manno, M. Traverso, V. Di Dio, Convolutional neural network for dust and hotspot classification in PV modules, Energies 13, 6357 (2020). https://doi.org/10.3390/en13236357 [CrossRef] [Google Scholar]
  29. D. Zhang, Y. Yu, J. Dong, C. Li, D. Su, C. Chu, D. Yu, Mm-llms: Recent advances in multimodal large language models, arXiv:2401.13601 (2024). https://doi.org/10.48550/arXiv.2401.13601 [Google Scholar]
  30. R. Desislavov, F, Martínez-Plumed, J. Hernández-Orallo, Trends in Ai inference energy consumption: beyond the performance-vs-parameter laws of deep learning, Sustain. Comput.: Inform. Syst. 38, 100857 (2023). https://doi.org/10.1016/j.suscom.2023.100857 [Google Scholar]
  31. J.-O. Schneppat, Pre-trained Models (2019). https://schneppat.com/pre-trained-models.html [Google Scholar]
  32. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778 [CrossRef] [Google Scholar]
  33. O. AI, J. Achiam et al., Gpt-4 technical report (2024). https://arxiv.org/abs/2303.08774 [Google Scholar]
  34. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848 [CrossRef] [Google Scholar]
  35. B. Chen, Z. Zhang, N. Langrené, S. Zhu, Unleashing the potential of prompt engineering in large language models: a comprehensive review, arXiv:2310.14735 (2024). https://doi.org/10.48550/arXiv.2310.14735 [Google Scholar]
  36. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q.V. Le, D. Zhou, Chain-of-thought prompting elicits reasoning in large language models, arXiv:2201.11903 (2022). https://doi.org/10.48550/arXiv.2201.11903 [Google Scholar]
  37. J. Wu et al., Visual prompting in multimodal large language models: a survey, arXiv:2409.15310 (2024). https://doi.org/10.48550/arXiv.2409.15310 [Google Scholar]
  38. S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, E. Chen, A survey on multimodal large language models, arXiv:2306.13549 (2024). https://doi.org/10.48550/arXiv.2306.13549 [Google Scholar]
  39. X. Yuan, T. Wang, Y.-H. Wang, E. Fine, R. Abdelghani, P. Lucas, H. Sauzéon, P.-Y. Oudeyer, Selecting better samples from pre-trained llms: case study on question generation, arXiv:2209.11000 (2022). https://doi.org/10.48550/arXiv.2209.11000 [Google Scholar]
  40. Y. Ni, S. Jiang, X. Wu, H. Shen, Y. Zhou, Evaluating the robustness to instructions of large-language-models, arXiv:2308.14306 (2023). https://doi.org/10.48550/arXiv.2308.14306 [Google Scholar]
  41. M. Millendorf, E. Obropta, N. Vadhavkar, Infrared solar module dataset for anomaly detection, in ICLR 2020 (2020) [Google Scholar]
  42. D. Jordan, T. Silverman, J. Wohlgemuth, S. Kurtz, K. VanSant, Photovoltaic failure and degradation modes: PV failure and degradation modes, Prog. Photovolt.: Res. Appl. 25, 04 (2017). https://doi.org/10.1002/pip.2866 [Google Scholar]
  43. G. Marcos, System thermography (2023). https://www.kaggle.com/code/marcosgabriel/dataset-intro-photovoltaic-system-thermography [Google Scholar]
  44. GPT-4: Quality, Performance & Price Analysis. https://artificialanalysis.ai/models/gpt-4?utm_source=chatgpt.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.