EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 11
Number of page(s) 7
Published online 09 April 2024
  1. P.J. Verlinden, Future challenges for photovoltaic manufacturing at the terawatt level, J. Renew. Sustain. Energy 12, 53505 (2020) [Google Scholar]
  2. W.L. Liu, W.J. Chen, T.K. Tsai et al., Effect of tin-doped indium oxide film thickness on the diffusion barrier between silicon and copper, Thin Solid Films 515, 2387 (2006) [Google Scholar]
  3. J. Yu, J. Bian, L. Jiang et al., Tungsten-doped indium oxide thin film as an effective high-temperature copper diffusion barrier, ECS Solid State Lett. 3, N15 (2014) [Google Scholar]
  4. T. Dullweber, A. Bettinelli, A. Lachowicz et al., Metallization of specific solar cells, in T. Dullweber L. Tous (Eds.), Silicon Solar Cell Metallization and Module Technology (IET 2021). [Google Scholar]
  5. O. Schultz-Wittmann, A. Turner, B. Eggleston et al., High volume manufacturing of high efficiency crystalline solar cells with shielded metal contacts, in Proceedings of the 32nd EU PVSEC, 2016 [Google Scholar]
  6. W. Ma, A. Jackson, C. Wang et al., 24% Efficiency hybrid cell technology integrating a low-cost, precision-pattern Cu metallization used for advanced PCB, in: Proceedings of the 7th World Conference on Photovoltaic Energy Conversion (IEEE, 2018). [Google Scholar]
  7. J. Ye (Risen), Scaling up cost-optimized HJT production, presented at TaiyangNews Virtual Conference, High Efficiency Solar Technologies Conference , December 14th, 2023. [Google Scholar]
  8. A. Cruz, D. Erfurt, Ph. Wagner et al., Optoelectrical analysis of TCO+silicon oxide double layers at the front and rear side of silicon heterojunction solar cells, Solar Energy Mater. Sol. Cells 236, 111493 (2022) [Google Scholar]
  9. A. Morales-Vilches, A. Cruz, S. Pingel et al., ITO-free silicon heterojunction solar cells with ZnO:Al/SiO2 front electrodes reaching a conversion efficiency of 23%, IEEE J. Photovoltaics 9, 34 (2018) [Google Scholar]
  10. A. Lachowicz, N. Badel, N. Pernès et al., Self-aligned copper electrodeposition process for heterojunction solar cells, in: Proceedings of the 8th World Conference on Photovoltaic Energy Conversion, 2022 [Google Scholar]
  11. T. Hong (Huasun), How HJT performs in utility scale applications, presented at TaiyangNews Virtual Conference, September 1st, 2023. URL: Tracy Hong, Huasun: How HJT Performs in Utility-Scale Applications ( [Google Scholar]
  12. S. Harrison, C. Carriere, V. Barth et al., 400 W in Shingle SHJ configuration: promising optimization path for high power modules, in: Proceedings of the 48th IEEE PVSC, 2021. [Google Scholar]
  13. W. Li, L. Zhang, X. Yang et al., Damp-heat-stable, high efficiency, industrial-size silicon heterojunction solar cells, Joule 4, 913 (2020) [Google Scholar]
  14. Suzhou Sunwell New Energy Ltd, [Google Scholar]
  15. P. Wolf, High throughput and low CapEx production equipment solution from Maxwell, presented at TaiyangNews Virtual Conference, High Efficiency Solar Technologies Conference, December 14th, 2023. [Google Scholar]
  16. C. Yu, K. Gao, C.-W. Peng et al., Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes, Nat. Energy 8, 1375 (2023) [Google Scholar]
  17. Numerous personal communications with cell manufacturers, equipment and electrolyte suppliers. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.