Issue
EPJ Photovolt.
Volume 13, 2022
Special Issue on ‘Recent Advances in Spectroscopy and Microscopy of Thin-films Materials, Interfaces, and Solar Cells 2021', edited by A. Vossier, M. Gueunier-Farret, J.-P. Kleider and D. Mencaraglia
Article Number 24
Number of page(s) 13
Section Semiconductor Thin Films
DOI https://doi.org/10.1051/epjpv/2022022
Published online 18 October 2022
  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy 2, 17032 (2017) [CrossRef] [Google Scholar]
  2. M. Green, E. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57), Prog. Photovolt. Res. Appl. 29, 3 (2021) [CrossRef] [Google Scholar]
  3. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovolt. 9, 1863 (2019) [CrossRef] [Google Scholar]
  4. N. Barreau, E. Bertin, A. Crossay, O. Durand, L. Arzel, S. Harel,T. Lepetit, L. Assmann, E. Gautron, D. Lincot, Investigation of co-evaporated polycrystalline Cu(In,Ga)S2 thin film yielding 16.0% efficiency solar cell, EPJ Photovolt. 13, 17 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  5. E. Bellini, Indium supply not an issue for CIGS industry (n.d.). https://www.pv-magazine.com/2021/08/11/indium-supply-not-an-issue-for-cigs-industry/ [Google Scholar]
  6. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater. 4, 1301465 (2014) [CrossRef] [Google Scholar]
  7. J. Li, Y. Huang, J. Huang, G. Liang, Y. Zhang, G. Rey, F. Guo, Z. Su, H. Zhu, L. Cai, K. Sun, Y. Sun, F. Liu, S. Chen, X. Hao, Y. Mai, M.A. Green, Defect control for 12.5% efficiency Cu2 ZnSnSe4 kesterite thin‐film solar cells by engineering of local chemical environment, Adv. Mater. 32, 2005268 (2020) [CrossRef] [Google Scholar]
  8. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, X. Hao, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nat. Energy 3, 764 (2018) [CrossRef] [Google Scholar]
  9. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 59), Progr. Photovolt. Res. Appl. 30, 3 (2022) [CrossRef] [Google Scholar]
  10. J. Li, D. Wang, X. Li, Y. Zeng, Y. Zhang, Cation substitution in earth-abundant kesterite photovoltaic materials, Adv. Sci. 5, 1700744 (2018) [CrossRef] [Google Scholar]
  11. P. Bais, M.T. Caldes, M. Paris, C. Guillot-Deudon, P. Fertey, B. Domengès, A. Lafond, Cationic and anionic disorder in CZTSSe kesterite compounds: a chemical crystallography study, Inorg. Chem. 56, 11779 (2017) [CrossRef] [PubMed] [Google Scholar]
  12. J. Bleuse, F. Ducroquet, H. Mariette, Potential fluctuations and localization effects in CZTS single crystals, as revealed by optical spectroscopy, J. Electr. Mater. 47, 4282 (2018) [CrossRef] [Google Scholar]
  13. L. Grenet, M.A.A. Suzon, F. Emieux, F. Roux, Analysis of failure modes in kesterite solar cells, ACS Appl. Energy Mater. 1, 2103 (2018) [CrossRef] [Google Scholar]
  14. Z.-K. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, S.-H. Wei, Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds, Adv. Funct. Mater. 25, 6733 (2015) [CrossRef] [Google Scholar]
  15. S. Schorr, The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study, Solar Energy Mater. Solar Cells 95, 1482 (2011) [CrossRef] [Google Scholar]
  16. T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells, Appl. Phys. Lett. 103, 103506 (2013) [CrossRef] [Google Scholar]
  17. A. Crovetto, O. Hansen, What is the band alignment of Cu2 ZnSn(S,Se)4 solar cells? Solar Energy Mater. Solar Cells 169, 177 (2017) [CrossRef] [Google Scholar]
  18. S. Gao, Z. Jiang, L. Wu, J. Ao, Y. Zeng, Y. Sun, Y. Zhang, Interfaces of high-efficiency kesterite Cu2 ZnSnS(e)4 thin film solar cells, Chin. Phys. B 27, 018803 (2018) [CrossRef] [Google Scholar]
  19. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review: Kesterite solar cells, Prog. Photovolt: Res. Appl. 24, 879 (2016) [CrossRef] [Google Scholar]
  20. M.H. Sayed, J. Schoneberg, J. Parisi, L. Gütay, Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis, Mater. Sci. Semiconduct. Process. 76, 31 (2018) [CrossRef] [Google Scholar]
  21. C. Yan, J. Huang, K. Sun, Y. Zhang, M.A. Green, X. Hao, Efficiency improvement of high band gap Cu2ZnSnS4 solar cell achieved by silver incorporation, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), IEEE, Waikoloa Village, HI (2018), pp. 3709–3711 [Google Scholar]
  22. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, X. Hao, Beyond 11% efficient sulfide kesterite Cu2ZnxCd1-xSnS4 solar cell: effects of cadmium alloying, ACS Energy Lett. 2, 930 (2017) [CrossRef] [Google Scholar]
  23. G. Gurieva, A. Franz, J.M. Prieto, T. Unold, S. Schorr, Structural and optoelectronic characterization of (AgxCu1-x)ZnSnSe4 solid solution, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), IEEE, Waikoloa Village, HI (2018), pp. 0808–0811 [CrossRef] [Google Scholar]
  24. M.S. Kumar, S.P. Madhusudanan, S.K. Batabyal, Substitution of Zn in earth‐abundant Cu2ZnSn(S,Se)4 based thin film solar cells − a status review, Sol. Energy Mater. Solar Cells 185, 287 (2018) [CrossRef] [Google Scholar]
  25. X. Cui, K. Sun, J. Huang, C.-Y. Lee, C. Yan, H. Sun, Y. Zhang, F. Liu, Md.A. Hossain, Y. Zakaria, L.H. Wong, M. Green, B. Hoex, X. Hao, Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer, Chem. Mater. 30, 7860 (2018) [CrossRef] [Google Scholar]
  26. J.K. Larsen, F. Larsson, T. Törndahl, N. Saini, L. Riekehr, Y. Ren, A. Biswal, D. Hauschild, L. Weinhardt, C. Heske, C. Platzer‐Björkman, Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency, Adv. Energy Mater. 9, 1900439 (2019) [CrossRef] [Google Scholar]
  27. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1-xCdxS buffer layer, Adv. Energy Mater. 6, 1600046 (2016) [CrossRef] [Google Scholar]
  28. C. Albrecht, Joseph R. Lakowicz, Principles of fluorescence spectroscopy, Anal. Bioanal Chem. 390, 1223 (2008) [CrossRef] [Google Scholar]
  29. B.G. Mendis, A.A. Taylor, M. Guennou, D.M. Berg, M. Arasimowicz, S. Ahmed, H. Deligianni, P.J. Dale, Nanometre-scale optical property fluctuations in Cu2ZnSnS4 revealed by low temperature cathodoluminescence, Solar Energy Mater. Solar Cells 174, 65 (2018) [CrossRef] [Google Scholar]
  30. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodríguez, Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films, Appl. Phys. Lett. 104, 021901 (2014) [CrossRef] [Google Scholar]
  31. M. Paris, L. Choubrac, A. Lafond, C. Guillot-Deudon, S. Jobic, Solid-state NMR and Raman spectroscopy to address the local structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials, Inorg. Chem. 53, 8646 (2014) [CrossRef] [PubMed] [Google Scholar]
  32. C. Tamin, D. Chaumont, O. Heintz, R. Chassagnon, A. Leray, N. Geoffroy, M. Guerineau, M. Adnane, Investigation of absorber and heterojunction in the pure sulphide kesterite, Bol. Soc. Esp.Cerám. Vidr. 60, 380 (2021) [Google Scholar]
  33. M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, V. Izquierdo-Roca, Structural Polymorphism in “Kesterite” Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis, Inorg. Chem. 56, 3467 (2017) [CrossRef] [PubMed] [Google Scholar]
  34. G. Tseberlidis, V. Trifiletti, A. Le Donne, L. Frioni, M. Acciarri, S. Binetti, Kesterite solar-cells by drop-casting of inorganic sol-gel inks, Solar Energy 208, 532 (2020) [CrossRef] [Google Scholar]
  35. A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation, CrystEngComm. 16, 4120 (2014) [CrossRef] [Google Scholar]
  36. R. Martí Valls, T. Stoyanova Lyubenova, I. Calvet Roures, L. Oliveira, D. Fraga Chiva, J.B. Carda Castelló, Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn(S, Se)4 thin layers, Solar Energy Mater. Solar Cells 161, 432 (2017) [CrossRef] [Google Scholar]
  37. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films, Thin Solid Films 517, 2519 (2009) [CrossRef] [Google Scholar]
  38. R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells, Solar Energy Mater. Solar Cells 95, 3216 (2011) [CrossRef] [Google Scholar]
  39. M.I. Khalil, R. Bernasconi, S. Ieffa, A. Lucotti, A. Le Donne, S. Binetti, L. Magagnin, Effect of co-electrodeposited Cu-Zn-Sn precursor compositions on sulfurized CZTS thin films for solar cell, ECS Trans. 64, 33 (2015) [CrossRef] [Google Scholar]
  40. N.R. Mathews, J. Tamy Benítez, F. Paraguay-Delgado, M. Pal, L. Huerta, Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS-Cu layers, J Mater Sci: Mater Electron. 24, 4060 (2013) [CrossRef] [Google Scholar]
  41. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Solar Energy Mater. 67, 83 (2001) [CrossRef] [Google Scholar]
  42. A. Santoni, F. Biccari, C. Malerba, M. Valentini, R. Chierchia, A. Mittiga, Valence band offset at the CdS/Cu2 ZnSnS4 interface probed by X-ray photoelectron spectroscopy, J. Phys. D: Appl. Phys. 46, 175101 (2013) [CrossRef] [Google Scholar]
  43. M. Bär, B.-A. Schubert, B. Marsen, R.G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, H.-W. Schock, Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2 ZnSnS4 thin-film solar cell heterojunction, Appl. Phys. Lett. 99, 222105 (2011) [CrossRef] [Google Scholar]
  44. H.-J. Chen, S.-W. Fu, S.-H. Wu, T.-C. Tsai, H.-T. Wu, C.-F. Shih, Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4, J. Phys. D: Appl. Phys. 49, 335102 (2016) [CrossRef] [Google Scholar]
  45. Z.-Y. Dong, Y.-F. Li, B. Yao, Z.-H. Ding, G. Yang, R. Deng, X. Fang, Z.-P. Wei, L. Liu, An experimental and first-principles study on band alignments at interfaces of Cu2ZnSnS4/CdS/ZnO heterojunctions, J. Phys. D: Appl. Phys. 47, 075304 (2014) [CrossRef] [Google Scholar]
  46. S. Tajima, K. Kataoka, N. Takahashi, Y. Kimoto, T. Fukano, M. Hasegawa, H. Hazama, Direct measurement of band offset at the interface between CdS and Cu2ZnSnS4 using hard X-ray photoelectron spectroscopy, Appl. Phys. Lett. 103, 243906 (2013) [CrossRef] [Google Scholar]
  47. J. Li, Q. Du, W. Liu, G. Jiang, X. Feng, W. Zhang, J. Zhu, C. Zhu, The band offset at CdS/Cu2ZnSnS4 heterojunction interface, Electr. Mater. Lett. 8, 365 (2012) [CrossRef] [Google Scholar]
  48. C. Yan, F. Liu, N. Song, B.K. Ng, J.A. Stride, A. Tadich, X. Hao, Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4, Appl. Phys. Lett. 104, 173901 (2014) [CrossRef] [Google Scholar]
  49. R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D.B. Mitzi, Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface, Appl. Phys. Lett. 98, 253502 (2011) [CrossRef] [Google Scholar]
  50. Z. Su, G. Liang, P. Fan, J. Luo, Z. Zheng, Z. Xie, W. Wang, S. Chen, J. Hu, Y. Wei, C. Yan, J. Huang, X. Hao, F. Liu, Device postannealing enabling over 12% efficient solution‐processed Cu2ZnSnS4 solar cells with Cd2+ substitution, Adv. Mater. 32, 2000121 (2020) [CrossRef] [Google Scholar]
  51. C. Tamin, D. Chaumont, O. Heintz, M. Adnane, Estimation of band alignment at CdS/CZTS hetero-interface by direct XPS measurements, Surf. Interface Anal. (2020). https://doi.org/10.1002/sia.6881 [Google Scholar]
  52. X. Wen, P. Yu, Y.-R. Toh, Y.-C. Lee, K.-Y. Huang, S. Huang, S. Shrestha, G. Conibeer, J. Tang, Ultrafast electron transfer in the nanocomposite of the graphene oxide-Au nanocluster with graphene oxide as a donor, J. Mater. Chem. C. 2, 3826 (2014) [CrossRef] [Google Scholar]
  53. S. Lie, M.I. Sandi, Y.F. Tay, W. Li, J.M.R. Tan, D.M. Bishop, O. Gunawan, L.H. Wong, Improving the charge separation and collection at the buffer/absorber interface by double-layered Mn-substituted CZTS, Solar Energy Mater. Solar Cells 185, 351 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.