EPJ Photovolt.
Volume 12, 2021
EU PVSEC 2021: State of the Art and Developments in Photovoltaics
Article Number 9
Number of page(s) 13
Published online 01 December 2021
  1. K. Ramspeck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Birkmann, A. Seidl, in 27th EUPVSEC, 2012, [Google Scholar]
  2. R. Eberle, W. Kwapil, F. Schindler, S.W. Glunz, M.C. Schubert, Energy Procedia 124, 712 (2017) [CrossRef] [Google Scholar]
  3. C.E. Chan, D.N.R. Payne, B.J. Hallam, M.D. Abbott, T.H. Fung, A.M. Wenham, B.S. Tjahjono et al., IEEE J. Photovolt. 6, 1473 (2016) [CrossRef] [Google Scholar]
  4. D. Bredemeier, D.C. Walter, J. Schmidt, Sol. RRL 2, 1700159 (2018) [CrossRef] [Google Scholar]
  5. T. Luka, F. Kersten, M. Pander, M. Koentopp, M. Turek, W. Bergholz, T. Pernau, Towards a test standard of light and elevated temperature-induced degradation, PV Tech Power 23, 53 (2020) [Google Scholar]
  6. F. Kersten, F. Frühauf, R. Lantzsch, M. Schütze, C. Taubitz, F. Fertig, M. Schaper et al., in 15th International Conference on Concentrator Photovoltaic Systems (CPV-15), AIP Conf. Proc. 2147, 090001 (2019) [Google Scholar]
  7. I.L. Repins, F. Kersten, B. Hallam, K. VanSant, M.B. Koentopp, Solar Energy 208, 894 (2020) [CrossRef] [Google Scholar]
  8. A. Herguth, G. Schubert, M. Kaes, G. Hahn, in 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion: Waikoloa, Hawaii, May 7–12, 2006 WCPEC-4, (IEEE, Piscataway NJ, 2006), pp. 940–943 [Google Scholar]
  9. H. Hashigami, Y. Itakura, T. Saitoh, J. Appl. Phys. 93, 4240 (2003) [CrossRef] [Google Scholar]
  10. P. Hamer, B. Hallam, M. Abbott, S. Wenham, Phys. Stat. Solidi RRL 9, 297 (2015) [CrossRef] [Google Scholar]
  11. J. Schmidt, K. Bothe, R. Hezel, in Conference record of the twenty-ninth IEEE photovoltaic specialists conference: 2002 (IEEE, 2002), pp. 178–181 [CrossRef] [Google Scholar]
  12. S.W. Glunz, E. Schaffer, S. Rein, K. Bothe, J. Schmidt, in 3rd World Conference on Photovoltaic Energy Conversion, 2003 (2003) [Google Scholar]
  13. S. Wilking, C. Beckh, S. Ebert, A. Herguth, G. Hahn, Solar Energy Mater. Solar Cells 131, 2 (2014) [CrossRef] [Google Scholar]
  14. V. Steckenreiter, D.C. Walter, J. Schmidt, AIP Adv. 7, 35305 (2017) [Google Scholar]
  15. B. Hallam, M. Abbott, N. Nampalli, P. Hamer, S. Wenham, J. Appl. Phys. 119, 65701 (2016) [Google Scholar]
  16. S. Wilking, M. Forster, A. Herguth, G. Hahn, Solar Energy Mater. Solar Cells 142, 87 (2015) [CrossRef] [Google Scholar]
  17. F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch et al., Solar Energy Mater. Solar Cells 142, 83 (2015) [CrossRef] [Google Scholar]
  18. D. Bredemeier, D. Walter, J. Schmidt, Solar Energy Mater. Solar Cells 173, 2 (2017) [CrossRef] [Google Scholar]
  19. W. Kwapil, T. Niewelt, M.C. Schubert, Solar Energy Mater. Solar Cells 173, 80–84 (2017) [CrossRef] [Google Scholar]
  20. T. Luka, M. Turek, C. Hagendorf, Solar Energy Mater. Solar Cells 187, 194 (2018) [CrossRef] [Google Scholar]
  21. C. Vargas, G. Coletti, C. Chan, D. Payne, Z. Hameiri, Solar Energy Mater. Solar Cells 189, 166 (2019) [CrossRef] [Google Scholar]
  22. F. Kersten, P. Engelhart, H.-C. Ploigt, F. Stenzel, K. Petter, T. Lindner, A. Szpeth, M. Bartzsch, A. Stekolnikov, M. Scherff, J. Heitmann, J.W. Müller, in 31st EUPVSEC 2015, [Google Scholar]
  23. W. Kwapil, J. Schon, T. Niewelt, M.C. Schubert, IEEE J. Photovolt. 10, 1591 (2020) [CrossRef] [Google Scholar]
  24. T.H. Fung, C.E. Chan, B.J. Hallam, D.N. Payne, M.D. Abbott, S.R. Wenham, Energy Procedia 124, 726 (2017) [CrossRef] [Google Scholar]
  25. C. Chan, T.H. Fung, M. Abbott, D. Payne, A. Wenham, B. Hallam, R. Chen et al., Sol. RRL 1, 1600028 (2017) [CrossRef] [Google Scholar]
  26. International Electrotechnical Commission, IEC61215-2:2021 (2021) [Google Scholar]
  27. E. Fokuhl, T. Naeem, A. Schmid, P. Gebhardt, T. Geipel, D. Philipp, in 36th EUPVSEC, 2019 [Google Scholar]
  28. J. Karas, I. Repins, M.B. Koentopp, F. Kersten, J.-N. Jaubert, C. Monokroussos, L. Jakisch et al., First Results from the International Round Robin Study on Light- and Elevated Temperature-Induced Degradation (LETID) (Poster at 2021 PV Reliability Workshop, 02/22–26) [Google Scholar]
  29. TÜV. Rheinland, TÜV 2 PfG 2689/04.19: Light and Elevated Temperature Induced Degradation (LeTID) Test for c-Si Photovoltaic (PV) Modules: Detection (2019) [Google Scholar]
  30. M.B. Koentopp, F. Kersten, E. Herzog, Towards an IEC LETID Test Standard: Procedures, Kinetics, and Separation of B-O Degradation from LETID (Poster at 2020 PV Reliability Workshop) [Google Scholar]
  31. E. Fokuhl, T. Naeem, P. Gebhardt, D. Philipp, Light and elevated Temperature Induced Degradation (LeTID) − Ein Vergleich von Prüfmethoden (Poster at 35th PV Symposium Bad Staffelstein, 2020) [Google Scholar]
  32. M. Wolf, G.T. Noel, R.J. Stirn, IEEE Trans. Electr. Dev. 24, 419 (1977) [CrossRef] [Google Scholar]
  33. G.M. Wyller, M. Wiig, I. Due-Sorensen, R. Sondena, IEEE J. Photovolt. 11, 878 (2021) [CrossRef] [Google Scholar]
  34. F. Kersten, F. Fertig, K. Petter, B. Klöter, E. Herzog, M.B. Strobel, J. Heitmann et al., Energy Procedia 124, 540 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.