Open Access
EPJ Photovolt.
Volume 12, 2021
Article Number 8
Number of page(s) 10
Section High Efficiency Materials and Devices - New concepts
Published online 19 November 2021
  1. A. Kojima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 6050 (2009) [CrossRef] [PubMed] [Google Scholar]
  2. J. Jeong et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature 592, 381 (2021) [CrossRef] [PubMed] [Google Scholar]
  3. N.J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13, 897 (2014) [CrossRef] [PubMed] [Google Scholar]
  4. D. Bi et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy 1, 16142 (2016) [CrossRef] [Google Scholar]
  5. F. Bella et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers, Science 354, 203 (2016) [CrossRef] [PubMed] [Google Scholar]
  6. Y. Wang et al., Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%, Nanoscale 8, 19654 (2016) [CrossRef] [PubMed] [Google Scholar]
  7. D. Bi et al., Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%, Nano Energy 23, 138 (2016) [CrossRef] [Google Scholar]
  8. M. Ferreira et al., SnO2 thin Film Oxides Produced by rf Sputtering for Transparent Thermoelectric Devices, Mater. Today Proc. 2, 647 (2015) [CrossRef] [Google Scholar]
  9. R.D. Chavan et al., Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells, Sol. Energy 186, 156 (2019) [CrossRef] [Google Scholar]
  10. M.C. Wu et al., Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as electron transport layer, Sol. Energy Mater. Sol. Cells 157, 447 (2016) [CrossRef] [Google Scholar]
  11. D. Liu et al., Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer, Nano Energy 31, 462 (2017) [CrossRef] [Google Scholar]
  12. J.H. Heo et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci. 8, 1602 (2015) [CrossRef] [Google Scholar]
  13. Y. Li et al., Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells, Nat. Commun. 7, 12446 (2016) [Google Scholar]
  14. S.S. Mali et al., Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers, Nanoscale. 9, 3095 (2017) [CrossRef] [PubMed] [Google Scholar]
  15. M. Saliba et al., How to Make over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures, Chem. Mater. 30, 4193 (2018) [CrossRef] [Google Scholar]
  16. S. Sidhik et al., Improving the Optoelectronic Properties of Mesoporous TiO2 by Cobalt Doping for High-Performance Hysteresis-free Perovskite Solar Cells, ACS Appl. Mater. Interfaces 10, 3571 (2018) [CrossRef] [PubMed] [Google Scholar]
  17. M.I. Saidaminov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nat. Commun. 6, 7586 (2015) [Google Scholar]
  18. M. Saliba et al., Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ. Sci. 9, 1989 (2016) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.