Issue |
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/epjpv/2024003 | |
Published online | 01 April 2024 |
https://doi.org/10.1051/epjpv/2024003
Original Article
Stress tolerance of lightweight glass-free PV modules for vehicle integration
1
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland
2
CSEM, Sustainable Energy Center, Jaquet-Droz 1, Neuchâtel, 2000 Switzerland
3
Simoldes Plastics, Research & Innovation, Oliveira de Azeméis, Portugal
4
CEiiA, Automotive and Mobility Unit, Matosinhos, Portugal
* e-mail: antonin.faes@csem.ch
Received:
19
July
2023
Accepted:
14
January
2024
Published online: 1 April 2024
Electric vehicles (EVs) currently dominate the sales in the automotive market. A big leap in this market can be made by developing a photovoltaic product that can be integrated to an EV, as it can boost the driving range of the EV while reducing the charging frequency. Such vehicle-integrated photovoltaic (VIPV) products are already successfully demonstrated, but they are usually made with glass as a front sheet – making them bulky and limiting their use to the car roofs due to safety reasons. The contemporary focus of the research in the field of VIPV is on developing a product that is lightweight (LW) and easily integrable into the complex shapes of an EV. Therefore, in this work, we present our initial findings on a novel architecture for LW VIPV modules employing polycarbonate (PC) as a front sheet. The mechanical behaviour of the LW module under bending is successfully simulated using finite elements (FE) modelling to predict the fracture of the solar cells, which can then be used as a predictive tool to check the maximal load on the PV body of an EV before cracking the c-Si solar cells. We demonstrate that a change in the temperature of the PC-based LW modules can modify the interspacing between the cells and thus create stress on the connectors. The dog-bone connectors are found to allow almost unconstrained movement of the cells in the module when subjected to variation of temperature. The cell movements may result in mechanical fatigue of the interconnection, which can ultimately result in disconnection of the cells. Initial performance of the dog-bone connectors is investigated by applying mechanical fatigue experiments, which demonstrate that the special geometry of the dog-bone connector could endure a greater number of thermal cycles than a simple prismatic shape would.
Key words: Vehicle-integrated photovoltaics / finite element simulations / dog-bone interconnection / VIPV / glass-free PV module / lightweight PV
© U. Desai et al., Published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.