Issue
EPJ Photovolt.
Volume 16, 2025
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
Article Number 15
Number of page(s) 9
DOI https://doi.org/10.1051/epjpv/2025006
Published online 21 February 2025
  1. V. LaSalvia, A. Youssef, M.A. Jensen, E.E. Lonney, W. Nemeth, M. Page, W. Nam, T. Buonassi, P. Stradins, Tabula Rasa for n-Cz silicon-based photovoltaics, Prog. Photovol.: Res. Appl. 27, 136 (2019). https://doi.org/10.1002/pip.3068 [CrossRef] [Google Scholar]
  2. J.M. Hwang, D.K. Schroder, Recombination properties of oxygen‐precipitated silicon, J. Appl. Phys. 59, 2476 (1986). https://doi.org/10.1063/1.336993 [CrossRef] [Google Scholar]
  3. M. Pagani, R.J. Falster, G.R. Fisher, G.C. Ferrero, M. Olmo, Spatial variations in oxygen precipitation in silicon after high temperature rapid thermal annealing, Appl. Phys. Lett. 70, 1572 (1997). https://doi.org/10.1063/1.118620 [CrossRef] [Google Scholar]
  4. J.D. Murphy, R.E. McGuire, K. Bothe, V.V. Voronkov, R.J. Falster, Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation, Sol. Energy Mater. Sol. Cells 120, 402 (2014). https://doi.org/10.1016/j.solmat.2013.06.018 [CrossRef] [Google Scholar]
  5. R.J. Falster, M. Cornara, D. Gambaro, M. Olmo, M. Pagani, Effect of high temperature pre-anneal on oxygen precipitates nucleation kinetics, Solid State Phenom. 57, 123 (1997). https://doi.org/10.4028/www.scientific.net/SSP.57-58.123 [CrossRef] [Google Scholar]
  6. S.M. Hu, Precipitation of oxygen in silicon: Some phenomena and a nucleation model, J. Appl. Phys. 52, 3974 (1981). https://doi.org/10.1063/1.329204 [CrossRef] [Google Scholar]
  7. R. Basnet, F.E. Rougieux, C. Sun, S.P. Phang, C. Samundsett, R. Einhaus, J. Degoulang, D. Macdonald, Methods to improve bulk lifetime in n-type Czochralski-grown upgraded metallurgical-grade silicon wafers, IEEE J. Photovolt. 8, 990 (2018). https://doi.org/10.1109/JPHOTOV.2018.2834944 [CrossRef] [Google Scholar]
  8. V.V. Voronkov, R. Falster, Vacancy and self-interstitial concentration incorporated into growing silicon crystals, J. Appl. Phys. 86, 5975 (1999). https://doi.org/10.1063/1.371642 [CrossRef] [Google Scholar]
  9. V.V. Voronkov, R. Falster, Vacancy-type microdefect formation in Czochralski silicon, J. Cryst. Growth 194, 76 (1998). https://doi.org/10.1016/S0022-0248(98)00550-8 [CrossRef] [Google Scholar]
  10. D.A. Antoniadis, Oxidation-induced point-defects in silicon, J. Electrochem. Soc. 129, 1093 (1982). https://doi.org/10.1149/1.2124034 [CrossRef] [Google Scholar]
  11. T.Y. Tan, U. Gösele, Growth-kinetics of oxidation-induced stacking-faults in silicon − A new concept, Appl. Phys. Lett. 39, 86 (1981). https://doi.org/10.1063/1.92526 [CrossRef] [Google Scholar]
  12. D.F. Downey, M. Farley, K.S. Jones, G. Ryding, Ion Implantation Technology-92 (Elsevier B.V., North Holland, 1993) [Google Scholar]
  13. M.N. Kham, I. Matko, B. Chenevier, P. Ashburn, Reduced boron diffusion under interstitial injection in fluorine implanted silicon, J. Appl. Phys. 102, 7 (2007). https://doi.org/10.1063/1.2822465 [Google Scholar]
  14. J. Ochoa, V. LaSalvia, P. Stradins, M. Bertoni, Understanding the origin of Tabula Rasa-induced defects in n-type Cz c-Si: The case of nitrogen atmosphere, Sol. Energy Mater. Sol. Cells 252, 112159 (2023). https://doi.org/10.1016/j.solmat.2022.112159 [CrossRef] [Google Scholar]
  15. F. Kersten, P. Engelhart, H.C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J.W. Müller, Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature, Sol. Energy Mater. Sol. Cells 142, 83 (2015). https://doi.org/10.1016/j.solmat.2015.06.015 [CrossRef] [Google Scholar]
  16. J. Fritz, A. Zuschlag, D. Skorka, A. Schmid, G. Hahn, Impact of temperature and doping on LeTID and regeneration in mc-Si, in Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, München, Germany, 2017), p. 569. https://dx.doi.org/10.4229/EUPVSEC20172017-2AV.1.40 [Google Scholar]
  17. F. Kersten, P. Engelhart, H.C. Ploigt, F. Stenzel, K. Petter, T. Lindner, A. Szpeth, M. Bartzsch, A. Stekolnikov, M. Scherff, J. Heitmann, J.W. Müller, A new light induced volume degradation effect of mc-Si solar cells and modules, in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, 2015), p. 1830 [Google Scholar]
  18. C. Vargas, K. Kim, G. Coletti, D. Payne, C. Chan, S. Wenham, Z. Hameiri, Influence of silicon nitride and its hydrogen content of carrier-induced degradation in multicrystalline silicon, in Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, München, Germany, 2017), p. 561 [Google Scholar]
  19. B. Hammann, N. Assmann, P.M. Weiser, W. Kwapil, T. Niewelt, F. Schindler, R. Søndenå, E.V. Monakhov, M.C. Schubert, The impact of different hydrogen configurations on light-and elevated-temperature-induced degradation, IEEE J. Photovolt. 13, 224 (2023). https://doi.org/10.1109/JPHOTOV.2023.3236185 [CrossRef] [Google Scholar]
  20. A.R. Meyer, P.C. Taylor, V. LaSalvia, X. Wang, W. Nemeth, M. Page, D.L. Young, S. Agarwal, P. Stradins, Atomic structure of defect responsible for light-induced efficiency loss in silicon solar cells in warmer climates, Cell Rep. Phys. Sci. 4, 101201 (2023). https://doi.org/10.1016/j.xcrp.2022.101201 [CrossRef] [Google Scholar]
  21. D. Chen, P. Hamer, M. Kim, C. Chan, A.C. Wenham, F. Rougieux, Y. Zhang, M. Abbott, B. Hallam, Hydrogen-induced degradation: Explaining the mechanism behind light- and elevated temperature-induced degradation in n- and p-type silicon, Sol. Energy Mater. Sol. Cells 207, 110353 (2020). https://doi.org/10.1016/j.solmat.2019.110353 [CrossRef] [Google Scholar]
  22. C. Vargas, S. Nie, D. Chen, C. Chan, B. Hallam, G. Coletti, Z. Hameiri, Degradation and recovery of n-type multi-crystalline silicon under illuminated and dark annealing conditions at moderate temperatures, IEEE J. Photovolt. 9, 355 (2018). https://doi.org/10.1109/JPHOTOV.2018.2885711 [Google Scholar]
  23. D. Chen, P.G. Hamer, M. Kim, T.H. Fung, G. Bourret-Sicotte, S. Liu, C.E. Chan, A. Cisela, R. Chen, M.D. Abbott, B. Hallam, S.R. Wenham, Hydrogen induced degradation: A possible mechanism for light- and elevated temperature- induced degradation in n-type silicon, Sol. Energy Mater. Sol. Cells 185, 174 (2018). https://doi.org/10.1016/j.solmat.2018.05.034 [CrossRef] [Google Scholar]
  24. C. Renevier, E. Fourmond, M. Forster, S. Parola, M. Le Coz, E. Picard, Lifetime degradation on n-type wafers with boron-diffused and SiO2/SiN-passivated surface, Energy Proc. 55, 280 (2014), https://doi.org/10.1016/j.egypro.2014.08.082 [CrossRef] [Google Scholar]
  25. D. Kang, H.C. Sio, X. Zhang, J. Yang, J. Jin, D. Macdonald, Light and elevated temperature induced degradation in mono-like and float-zone silicon: Correlations to material types, silicon nitride films, and dopant diffusion, IEEE J. Photovolt. 11, 1167 (2021), https://doi.org/10.1109/JPHOTOV.2021.3082645 [CrossRef] [Google Scholar]
  26. A. Herguth, On the lifetime-equivalent defect density: Properties, application, and pitfalls, IEEE J. Photovolt. 9, 1182 (2019). https://doi.org/10.1109/JPHOTOV.2019.2922470 [CrossRef] [Google Scholar]
  27. A. Herguth, J. Kamphues, On the impact of bulk lifetime on the quantification of recombination at the surface of semiconductors, IEEE J. Photovolt. 13, 672 (2023). https://doi.org/10.1109/JPHOTOV.2023.3291453 [CrossRef] [Google Scholar]
  28. P.M. Weiser, E. Monakhov, H. Haug, M.S. Wiig, R. Søndenå, Hydrogen-related defects measured by infrared spectroscopy in multicrystalline silicon wafers throughout an illuminated annealing process, J. Appl. Phys. 127, 065703 (2020). https://doi.org/10.1063/1.5142476 [CrossRef] [Google Scholar]
  29. B. Pajot, B. Clerjaud, Optical absorption of impurities and defects in semiconducting crystals: Electronic absorption of deep centres and vibrational spectra (Springer Science & Business Media, 2013), Vol. 169. http://dx.doi.org/10.1007/978-3-642-18018-7 [Google Scholar]
  30. B.B. Nielsen, L. Hoffmann, M. Budde, SiH stretch modes of hydrogen − vacancy defects in silicon, Mater. Sci. Eng. B 36, 259 (1996). https://doi.org/10.1016/0921-5107(95)01260-5 [CrossRef] [Google Scholar]
  31. P. Deák, M. Heinrich, L.C. Snyder, J.W. Corbett, Hydrogen-related vibrations in crystalline silicon, Mater. Sci. Eng. B 4, 57 (1989). https://doi.org/10.1016/0921-5107(89)90216-X [CrossRef] [Google Scholar]
  32. F.A. Reboredo, M. Ferconi, S.T. Pantelides, Theory of the nucleation, growth, and structure of hydrogen-induced extended defects in silicon, Phys. Rev. Lett. 82, 4870 (1999). https://doi.org/10.1103/PhysRevLett.82.4870 [CrossRef] [Google Scholar]
  33. M. Suezawa, Hydrogen-point defect complexes in electron-irradiated C-doped and high-purity Si, Jpn. J. Appl. Phys. 38, L608 (1999). https://doi.org/10.1143/JJAP.38.L608 [CrossRef] [Google Scholar]
  34. P. Bech, B. Nielsen, L. Hoffmann, M. Budde, R. Jones, J.P. Goss, S. Öberg, H interacting with intrinsic defects in Si, Mater. Sci. Forum 196, 933 (1995). https://doi.org/10.4028/www.scientific.net/MSF.196-201.933 [CrossRef] [Google Scholar]
  35. E.V. Lavrov, J. Weber, L. Huang, B.B. Nielsen, Vacancy-hydrogen defects in silicon studied by Raman spectroscopy, Phys. Rev. B 64, 035204 (2001). https://doi.org/10.1103/PhysRevB.64.035204 [CrossRef] [Google Scholar]
  36. H. Zimmermann, U. Gösele, M. Seilenthal, P. Eichinger, Vacancy concentration wafer mapping in silicon, J. Cryst. Growth 129, 582 (1993). https://doi.org/10.1016/0022-0248(93)90494-H [CrossRef] [Google Scholar]
  37. A.R. Meyer, V. LaSalvia, W. Nemeth, W. Xu, M. Page, D.L. Young, S. Agarwal, P. Stradins, Influence of tabula rasa on process-and light-induced degradation of solar cells fabricated from Czochralski silicon, IEEE J. Photovolt. 10, 1557 (2020). https://doi.org/10.1109/JPHOTOV.2020.3020214 [CrossRef] [Google Scholar]
  38. M. Mehler, N. Weinert, N. Aßmann, A. Herguth, G. Hahn, F. Geml, Long-term lifetime instabilities in n-type FZ- and Cz-silicon wafers under illumination at elevated temperature, Sol. Energy Mater. Sol. Cells 278, 113169 (2024). https://doi.org/10.1016/j.solmat.2024.113169 [CrossRef] [Google Scholar]
  39. T. Niewelt, R. Post, F. Schindler, W. Kwapil, M.C. Schubert, Investigation of LeTID where we can control it-Application of FZ silicon for defect studies, AIP Conf. Proc. 2147, 140006-1 (2019). https://doi.org/10.1063/1.5123893 [Google Scholar]
  40. A. Kimmerle, J. Greulich, A. Wolf, Carrier-diffusion corrected J0-analysis of charge carrier lifetime measurements for increased consistency, Sol. Energy Mater. Sol. Cells 142, 116 (2015). https://doi.org/10.1016/j.solmat.2015.06.043 [CrossRef] [Google Scholar]
  41. S. Bernardini, T.U. Nærland, A.L. Blum, G. Coletti, M.I. Bertoni, Unraveling bulk defects in high‐quality c‐Si material via TIDLS, Prog. Photovolt.: Res. Appl. 25, 209 (2017). https://doi.org/10.1002/pip.2847 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.