Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 7
Number of page(s) 17
DOI https://doi.org/10.1051/epjpv/2024001
Published online 28 February 2024
  1. A. Fairbrother, H. Quest, E. Özkalay, P. Wälchi, G. Friesen, C. Ballif, Long-term performance and shade detection in building integrated photovoltaic systems, Solar RRL 6, 2100583 (2022) [Google Scholar]
  2. M. Caccivio, E. Özkalay, D. Chianese, Photovoltaïque intégré au bâti et ombrage - Défis et solutions, bulletin.ch, September 2022 [Google Scholar]
  3. E. Özkalay, G. Friesen, M. Caccivio, P. Bonomo, A. Fairbrother, C. Ballif, A. Virtuani, Operating temperatures and diurnal temperature variations of modules installed in open-rack and typical BIPV configurations, IEEE J. Photovoltaic 12, 133 (2022) [CrossRef] [Google Scholar]
  4. D. Jordan, S. Kurts, K. VanSant, J. Newmiller, Compendium of photovoltaic degradation rates, Progr. Photovolt. 24, 978 (2016) [Google Scholar]
  5. H. Hu, W. Gambogi, K.R. Choudhury, L. Garreau-Iles, T. Felder, S. MacMaster, O. Fu, T.-J. Trout, Field analysis and degradation of modules and components in distributed PV applications, in 35th European Photovoltaic Solar Energy Conference and Exhibition, 2018 [Google Scholar]
  6. IEC, IEC 61215-2:2021 Terrestrial photovoltaic (PV) modules - design qualification and type approval - Part 2: Test procedures, International Electrotechnical Commission, 2021 [Google Scholar]
  7. IEC, IEC 61730-2:2023 Photovoltaic (PV) module safety qualification - Part 2: requirements for testing, International Electrotechnical Commission, 2023 [Google Scholar]
  8. IEC, IEC TS 63126:2020 ED1 Guidelines for qualifying PV modules, components and materials for operation at high temperatures, International Electrotechnical Commission, 2020 [Google Scholar]
  9. IEA Task 13, Service Life Estimation for Photovoltaic Modules, International Energy Agency, 2021 [Google Scholar]
  10. R. Witteck, M. Siebert, S. Blankemeyer, H. Schulte-Huxel, M. Köntges, Three bypass diodes architecture at the limit, IEEE J. Photovoltaics 10, 1828 (2020) [CrossRef] [Google Scholar]
  11. M. Alonso-García, J. Ruiz, F. Chenlo, Experimental study of mismatch and shading effects in the I–V characteristic of a photovoltaic module, Solar Energy Mater. Solar Cells 90, 329 (2006) [CrossRef] [Google Scholar]
  12. K. Kim, P. Krein, Photovoltaic hot spot analysis for cells with various reverse-bias characteristics through electrical and thermal simulation, in 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, 2013 [Google Scholar]
  13. O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. Schubert, J. Wagner, W. Warta, Understanding junction breakdown in multicrystalline solar cells, J. Appl. Phys. 109, 071101 (2011) [Google Scholar]
  14. J. Bauer, J.-M. Wagner, A. Lotnyk, H. Blumtritt, N. Zakharov, O. Breitenstein, Physical mechanisms of electrical breakdown in silicon solar cells, 2009 [Google Scholar]
  15. K. Al Abdullah, F. Al Alloush, A. Jaafar, C. Salame, Study of the effects related to the electric reverse stress study of the effects related to the electric reverse stress, Energy Procedia 36, 104 (2013) [CrossRef] [Google Scholar]
  16. Y. Jia, Y. Wang, X. Hu, J. Xu, G. Weng, X. Luo, S. Chen, Z. Zhu, H. Akiyama, Diagnosing breakdown mechanisms in monocrystalline silicon solar cells via electroluminescence imaging, Solar Energy 225, 463 (2021) [CrossRef] [Google Scholar]
  17. K.A. Kim, P.T. Krein, Hot spotting and second breakdown effects on reverse I-V characteristics for mono-crystalline Si photovoltaics, in IEEE Energy Conversion Congress and Exposition, Denver, 2013 [Google Scholar]
  18. W. Herrman, M. Adrian, W. Wiesner, Operational behaviour of commercial solar cells under reverse biased conditions, in 2nd WCPEC, Vienna, 1998 [Google Scholar]
  19. W. Hermann, et al., Effective hot-spot protection of PV modules - characteristics of crystalline silicon cells and consequences for cell production, in European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), 2001 [Google Scholar]
  20. F. Fertig, S. Rein, M. Schubert, W. Warta, Impact of junction breakdown in multi-crystalline silicon solar cells on hot spot formation and module performance, in 26th European PV Solar Energy Conference and Exhibition, Hamburg, 2011 [Google Scholar]
  21. J. Appelbaum, A. Chait, D. Thompson, Parameter estimation and screening of solar cells, Progr. Photovolt. Res. Appl. 1, 93 (1993) [CrossRef] [Google Scholar]
  22. J. Wohlgemuth, W. Herrmann, Hot spot tests for crystalline silicon modules, in Proceedings IEEE Photovoltaic Specialists Conference, 2005 [Google Scholar]
  23. J. Hudson, L. Vasilyev, J. Schmidt, G. Horner, Economic impacts and approaches to address hot-spot defects in photovoltaic devices, in Proceedings 35th IEEE Photovoltaic Specialists Conference (IOEEE, 2010) [Google Scholar]
  24. R. Vieira, F. de Araújo, M. Dhimish, M. Guerra, A comprehensive review on bypass diode application on photovoltaic modules, Energies 13, 2472 (2020) [Google Scholar]
  25. H. Hanifi, J. Schneider, J. Bagdahn, Reduced shading effect on half-cell modules – measurement and simulation, in 31st European Photovoltaic Solar Energy Conference and Exhibition, 2015 [Google Scholar]
  26. N. Klasen, D. Weisser, T. Rößler, D.H. Neuhaus, A. Kraft, Performance of shingled solar modules under partial shading, Prog. Photovolt. Res. Appl. 30, 325 (2022) [CrossRef] [Google Scholar]
  27. C.D. Jordan, T.J. Silverman, J.M. Wohlgemuth, S.R. Kurtz, K.T. VanSant, Photovoltaic failure and degradation modes, Progr. Photovolt. Res. Appl. 25, 318 (2017) [Google Scholar]
  28. A. Brooks, D. Cormode, A. Cronin, E. Kam-Lum, PV system power loss and module damage due to partial shade and bypass diode failure depend on cell behavior in reverse bias, in IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, 2015 [Google Scholar]
  29. W. Herrmann, W. Wiesner, W. Vaassen, Hot spot investigations on PV modules-new concepts for a test standard and consequences for module design with respect to bypass diodes, in 26th IEEE PVSC, 1997 [Google Scholar]
  30. I. Geisemeyer, F. Fertig, W. Warta, S. Rein, M. Schubert, Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography, Sol. Energy Mater. Sol. Cells 120, 259 (2014) [CrossRef] [Google Scholar]
  31. D.M. Kempe, D. Holsapple, K. Whitfield, N. Shiradkar, Standards development for modules in high temperature micro-environments, Progr. Photovolt. Res. Appl. 29, 445 (2021) [CrossRef] [Google Scholar]
  32. M. Kottek, J. Grieser, C. Beck, B. Rudolf, F. Rubel, World map of the Köppen-Geiger climate classification, Meteorol. Zeitsch. 15, 259 (2006) [CrossRef] [Google Scholar]
  33. H. Chu, L. Koduvelikulathu, V. Mihailetchi, G. Galbiati, A. Halm, R. Kopecek, Soft breakdown behavior of interdigitated-back-contact silicon solar cells, in 5th International Conference on Silicon Photovoltaics, 2015 [Google Scholar]
  34. R. Müller, C. Reichel, J. Schrof, M. Padilla, M. Selinger, I. Geisemeyer, J. Benick, M. Hermle, Analysisof n-type IBC solar cells with diffused boron emitter locally blocked by implanted phosphorus, Sol. Energy Mater. Sol. Cells 142, 54 (2015) [CrossRef] [Google Scholar]
  35. A. Dhass, P. Lakshmi, E. Natarajan, Investigation of performance parameters of different photovoltaic cell materials using the lambert-w function, Energy Procedia 90, 566 (2016) [CrossRef] [Google Scholar]
  36. Q. Zhang, L. Qun, Temperature and reverse voltage across a partially shaded Si PV cell, in 38th IEEE Photovoltaic Specialists Conference, Austin, 2012 [Google Scholar]
  37. IEC, IEC TS 60904-13:2018 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules, International Electrotechnical Commission, 2018 [Google Scholar]
  38. S. Wendlandt, A. Drobisch, T. Buseth, S. Krauter, P. Grunow, Hotspot risk analysis on silicon cell modules, in 26th European Photovoltaic Solar Energy Conference and Exhibition, 2010 [Google Scholar]
  39. Z. Zhang, J. Wohlgemuth, S. Kurtz, Thermal reliability study of bypass diodes in photovoltaic modules, in Photovoltaic Module Reliability Workshop, Golden, 2013 [Google Scholar]
  40. M. Theristis, J. Stein, C. Deline, D. Jordan, C. Robinson, W. Sekulic, A. Anderberg, D. Colvin, J. Walters, H. Seignur, B. King, Onymous early-life performance degradation analysis of recent photovoltaic module technologies, Progr. Photovoltaics 31, 149 (2023) [CrossRef] [Google Scholar]
  41. J. Karas, I. Repins, K. Berger, B. Kubicek, F. Jiang, D. Zhang, J. Jaubert, A. Cueli, T. Sample, B. Jaeckel, M. Pander, E. Fokuhl, M.Koentopp, F. Kersten, J. Choi, B. Bora, C. Banerjee, S. Wendlandt, T. Erion-Lorico, K. Sauer, J. Tsan, M. Pravettoni, M. Caccivio, G. Bellenda, C. Monokroussos, H. Maaroufi, Results from an international interlaboratory study on light-and elevated temperature-induced degradation in solar modules, Progr. Photovoltaics 30, 1255 (2022) [CrossRef] [Google Scholar]
  42. A. Sinha, J. Qian, S. Moffit, K. Hurst, K. Terwilliger, D. Miller, L. Schelhas, P. Hacke, UV-induced degradation of high-efficiency silicon PV modules with different cell architectures, Progr. Photovoltaics 1, 36 (2023) [CrossRef] [Google Scholar]
  43. A. Czanderna, F. Pern, Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review, Sol. Energy Mater. Sol. Cells 43, 101 (1996) [CrossRef] [Google Scholar]
  44. F.J. Pern, S.H. Glick, Fluorescence analysis as a diagnostic tool for polymer encapsulation processing and degradation, AIP Conf. Proc. 306, 573 (1994) [Google Scholar]
  45. IEA Task 13, Review of Failures of Photovoltaic Modules, International Energy Agency, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.