EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 6
Number of page(s) 10
Published online 28 February 2024
  1. R.E. Pawluk, Y. Chen, Y. She, Photovoltaic electricity generation loss due to snow – a literature review on influence factors, estimation, and mitigation, Renew. Sustain. Energy Rev. 107, 171 (2019) [CrossRef] [Google Scholar]
  2. E. Andenæs, B.P. Jelle, K. Ramlo, T. Kolas, J. Selj, S.E. Foss, The influence of snow and ice coverage on the energy generation from photovoltaic solar cells, Sol. Energy 159, 318 (2018) [CrossRef] [Google Scholar]
  3. N. Heidari, J. Gwamuri, T. Townsend, J.M. Pearce, Impact of snow and ground interference on photovoltaic electric system performance, IEEE J. Photovolt. 5, 1680 (2015) [CrossRef] [Google Scholar]
  4. L. Powers, J. Newmiller, T. Townsend, Measuring and modeling the effect of snow on photovoltaic system performance, in 2010 35th IEEE Photovoltaic Specialists Conference, Jun. 2010, pp. 000 973–000 978, iSSN: 0160-8371 [Google Scholar]
  5. T. Townsend, L. Powers, Photovoltaics and snow: an update from two winters of measurements in the SIERRA, in 2011 37th IEEE Photovoltaic Specialists Conference, Jun. 2011, pp. 003 231–003 236, iSSN: 0160-8371 [Google Scholar]
  6. U.E.I. Administration, Form EIA-860 detailed data with previous form data (EIA-860A/860B). [Online]. Available: [Google Scholar]
  7. J. Braid, D. Riley, L. Burnham, Design considerations for photovoltaic systems deployed in snowy climates, in 37th European Photovoltaic Solar Energy Conference and Exhibition, Oct. 2020 (WIP), pp. 1626-1631, iSBN: 9783936338737. Available: [Google Scholar]
  8. R.W. Andrews, J.M. Pearce, Prediction of energy effects on photovoltaic systems due to snowfall events, in: 2012 38th IEEE Photovoltaic Specialists Conference, Jun. 2012, pp. 003 386–003 391, iSSN: 0160-8371 [Google Scholar]
  9. B. Marion, R. Schaefer, H. Caine, G. Sanchez, Measured and modeled photovoltaic system energy losses from snow for Colorado and Wisconsin locations, Sol. Energy 97, 112 (2013) [CrossRef] [Google Scholar]
  10. L.B. Bosman, S.B. Darling, Performance modeling and valuation of snow-covered PV systems: examination of a simplified approach to decrease forecasting error, Environ. Sci. Pollut. Res. Int. 25, 15 484 (2018) [Google Scholar]
  11. J.L. Braid, D. Riley, J.M. Pearce, L. Burnham, Image analysis method for quantifying snow losses on PV systems, in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Jun. 2020, pp. 1510, iSSN: 0160-8371 [CrossRef] [Google Scholar]
  12. C. Baldus-Jeursen, A.L. Petsiuk, S.-A. Rheault, S. Pelland, A. Cote, Y. Poissant, J.M. Pearce, Snow losses for photovoltaic systems: validating the marion and townsend models, IEEE J. Photovolt. 13, 610 (2023) [CrossRef] [Google Scholar]
  13. J.P. Vargas, B. Goss, R. Gottschalg, Large scale PV systems under non-uniform and fault conditions, Sol. Energy 116, 303 (2015) [CrossRef] [Google Scholar]
  14. D.G. Lorente, S. Pedrazzi, G. Zini, A. Dalla Rosa, P. Tartarini, Mismatch losses in PV power plants, Sol. Energy 100, 42 (2014) [CrossRef] [Google Scholar]
  15. A. Dhyani, C. Pike, J.L. Braid, E. Whitney, L. Burnham, A. Tuteja, Facilitating large-scale snow shedding from in-field solar arrays using icephobic surfaces with low-interfacial toughness, Adv. Mater. Technol. 7, 2101032 (2022) [CrossRef] [Google Scholar]
  16. E. Cooper, J.L. Braid, L. Burnham, Identifying the electrical signature of snow in photovoltaic inverter data (San Juan, PR, USA, 2023) [Google Scholar]
  17. M.B. Øgaard, B.L. Aarseth, F. Skomedal, H.N. Riise, S. Sartori, J.H. Selj, Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection, Sol. Energy 223, 238 (2021) [CrossRef] [Google Scholar]
  18. A. Livera, M. Theristis, E. Koumpli, S. Theocharides, G. Makrides, J. Sutterlueti, J.S. Stein, G.E. Georghiou, Data processing and quality verification for improved photovoltaic performance and reliability analytics, Prog. Photovolt.: Res. Appl. 29, 143 (2021) [CrossRef] [Google Scholar]
  19. W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: a python package for modeling solar energy systems, JOSS 3, 884 (2018) [CrossRef] [Google Scholar]
  20. J.L. Braid, B. Pierce, Horizon profiling methods for photovoltaic arrays (San Juan, PR, USA, Jun. 2023) [Google Scholar]
  21. K. Anderson, M. Mikofski, Slope-Aware Backtracking for SingleAxis Trackers, National Renewable Energy Lab. (NREL), Golden, CO (United States); Det Norske Veritas Group, Oslo (Norway), Tech. Rep. NREL/TP-5K00-76626, Jul. 2020. [Online]. Available: [CrossRef] [Google Scholar]
  22. K. Anderson, Maximizing yield with improved singleaxis backtracking on cross-axis slopes, in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Jun. 2020, pp. 1466?1471, iSSN: 0160-8371. [Online]. Available: [CrossRef] [Google Scholar]
  23. D.L. King, W.E. Boyson, J.A. Kratochvill, Photovoltaic array performance model, Sandia National Laboratories, vol. SAND2004-3535, Aug. 2004 [Google Scholar]
  24. D.K. Perovich, Light reflection and transmission by a temperate snow cover, J. Glaciol. 53, 201 (2007) [CrossRef] [Google Scholar]
  25. K. Perry, W. Vining, K. Anderson, M. Muller, C. Hansen, PV analytics: a python package for automated processing of solar time series data, National Renewable Energy Lab. (NREL), Golden, CO (United States), Tech. Rep. NREL/PR-5K00-83824, Sep. 2022. [Online]. Available: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.