Open Access
Issue
EPJ Photovolt.
Volume 15, 2024
Article Number 31
Number of page(s) 16
DOI https://doi.org/10.1051/epjpv/2024026
Published online 23 September 2024
  1. J.M. Gonzalez Lopez, E. Pouresmaeil, C.A. Canizares, K. Bhattacharya, A. Mosaddegh, B.V. Solanki, Smart residential load simulator for energy management in smart grids, IEEE Trans. Ind. Electron. 66, 1443 (2019) [CrossRef] [Google Scholar]
  2. Z. Khan, M. Rehan, Harnessing airborne wind energy: prospects and challenges, J. Control Autom. Electr. Syst. 27, 728 (2016) [CrossRef] [Google Scholar]
  3. A. Panagopoulos, Water-energy nexus: desalination technologies and renewable energy sources, Environ. Sci. Pollut. Res. 28, 21009 (2021) [CrossRef] [PubMed] [Google Scholar]
  4. A. Panagopoulos, Brine management (saline water amp; wastewater effluents): Sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems, Chem. Eng. Process. 176, 108944 (2022) [CrossRef] [Google Scholar]
  5. Y. Chaibi, A. Allouhi, M. Salhi, A. El-jouni, Annual performance analysis of different maximum power point tracking techniques used in photovoltaic systems, Protect. Control Modern Power Syst. 4, 15 (2019) [Google Scholar]
  6. A.R. Reisi, M.H. Moradi, S. Jamasb, Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review, Renew. Sustain. Energy Rev. 19, 433 (2013) [CrossRef] [Google Scholar]
  7. D.-Y. Jung, Y.-H. Ji, S.-H. Park, Y.-C. Jung, C.-Y. Won, Interleaved soft-switching boost converter for photovoltaic power-generation system, IEEE Trans. Power Electron. 26, 1137 (2011) [CrossRef] [Google Scholar]
  8. T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Convers. 22, 439 (2007) [CrossRef] [Google Scholar]
  9. H. Al-Atrash, I. Batarseh, K. Rustom, Statistical modeling of dsp-based hill-climbing mppt algorithms in noisy environments, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005 (APEC, 2005), Vol. 3, pp. 1773–1777 [Google Scholar]
  10. B.N. Alajmi, K.H. Ahmed, S.J. Finney, B.W. Williams, Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system, IEEE Trans. Power Electron. 26, 1022 (2011) [CrossRef] [Google Scholar]
  11. W. Xiao, W.G. Dunford, A modified adaptive hill climbing MPPT method for photovoltaic power systems, in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE 2004), Vol. 3, pp. 1957–1963 [Google Scholar]
  12. S.K. Kollimalla, M. Kumar Mishra, Adaptive perturb observe mppt algorithm for photovoltaic system, in 2013 IEEE Power and Energy Conference at Illinois (PECI, 2013), pp. 42–47 [Google Scholar]
  13. N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, M. Vitelli, Predictive adaptive MPPT perturb and observe method, IEEE Trans. Aerosp. Electron. Syst. 43, 934 (2007) [CrossRef] [Google Scholar]
  14. T.K. Soon, S. Mekhilef, A. Safari, Simple and low cost incremental conductance maximum power point tracking using buck-boost converter, J. Renew. Sustain. Energy 5, 023106 (2013) [Google Scholar]
  15. A. Safari, S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using CUK converter, IEEE Trans. Ind. Electron. 58, 1154 (2011) [CrossRef] [Google Scholar]
  16. S. Mohanty, B. Subudhi, P.K. Ray, A new mppt design using grey wolf optimization technique for photovoltaic system under partial shading conditions, IEEE Trans. Sustain. Energy 7, 181 (2016) [CrossRef] [Google Scholar]
  17. S. Mohanty, B. Subudhi, P.K. Ray, A grey wolf-assisted perturb amp; observe MPPT algorithm for a PV system, IEEE Trans. Energy Convers. 32, 340 (2017) [CrossRef] [Google Scholar]
  18. S. Motahhir, A. El Hammoumi, A. El Ghzizal, The most used mppt algorithms: review and the suitable low-cost embedded board for each algorithm, J. Cleaner Product. 246, 118983 (2020) [CrossRef] [Google Scholar]
  19. A.G. Gad, Particle swarm optimization algorithm and its applications: a systematic review, Arch. Comput. Methods Eng. 29, 2531 (2022) [CrossRef] [Google Scholar]
  20. P. Trojovský, M. Dehghani, Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications, Sensors 22, 855 (2022) [CrossRef] [PubMed] [Google Scholar]
  21. K. Shejul, R. Harikrishnan, Energy consumption optimization of chiller plants with the genetic algorithm based gwo and jaya algorithm in the dynamic pricing demand response, Res. Eng. 22, 102193 (2024) [Google Scholar]
  22. J.A. Salim, B.M. Albaker, M.S. Alwan, M. Hasanuzzaman, Hybrid MPPT approach using cuckoo search and grey wolf optimizer for PV systems under variant operating conditions, Glob. Energy Interconnect. 5, 627 (2022) [CrossRef] [Google Scholar]
  23. C.B. Regaya, H. Hamdi, F. Farhani, A. Marai, A. Zaafouri, A. Chaari, Real-time implementation of a novel MPPT control based on the improved pso algorithm using an adaptive factor selection strategy for photovoltaic systems, ISA Trans. 146, 496 (2024) [CrossRef] [Google Scholar]
  24. S. Javed, K. Ishaque, A comprehensive analyses with new findings of different PSO variants for MPPT problem under partial shading, Ain Shams Eng. J. 13, 101680 (2022) [CrossRef] [Google Scholar]
  25. V. Kumar, R.K. Bindal, MPPT technique used with perturb and observe to enhance the efficiency of a photovoltaic system, Mater. Today: Proc. 69, A6 (2022) [CrossRef] [Google Scholar]
  26. S. Amose Dinakaran, A. Bhuvanesh, A.S. Kamaraja, P. Anitha, K. Karthik Kumar, P. Nirmal Kumar, Modelling and performance analysis of improved incremental conductance mppt technique for water pumping system, Measur.: Sens. 30, 100895 (2023) [CrossRef] [Google Scholar]
  27. K. Hussein, I. Muta, T. Hoshino, M. Osakada, Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions, IEE Proc.-Gener. Transm. Distrib. 142, 59 (1995). https://doi.org/10.1049/ip-gtd:19951577 [CrossRef] [Google Scholar]
  28. G. Walker, Evaluating MPPT converter topologies using a MATLAB PV model, J. Electr. Electron. Eng. 21, 49 (2001) [Google Scholar]
  29. V. Jately, B. Azzopardi, J. Joshi, B. Venkateswaran, A. Sharma, S. Arora, Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels, Renew. Sustain. Energy Rev. 150, 111467 (2021) [CrossRef] [Google Scholar]
  30. V. Kumar, R.K. Bindal, A comparative analysis of effective MPPT technology for photovoltaic system with boost converter, Mater. Today: Proc. 69, A1 (2022) [CrossRef] [Google Scholar]
  31. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69, 46 (2014) [CrossRef] [Google Scholar]
  32. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, (IEEE, 1995), Vol. 4, pp. 1942–1948 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.