Open Access
Issue |
EPJ Photovolt.
Volume 15, 2024
|
|
---|---|---|
Article Number | 34 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/epjpv/2024030 | |
Published online | 21 October 2024 |
- H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, M. Qu, J. Lu, L. Fang, C. Han, P. Porcel, O. Isabella, P. Gao, Z. Li, X. Xu, Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers, Nat. Energy 8, 789 (2023) [CrossRef] [Google Scholar]
- JinkoSolar Holding Co., Ltd, JinkoSolar's High-efficiency N-Type Monocrystalline Silicon Solar Cell Sets New Record with Maximum Conversion Efficiency of 26.89% [Press release]. Available at https://www.prnewswire.com/news-releases/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-solar-cell-sets-new-record-with-maximum-conversion-efficiency-of-26-89- 3019 71256.html (access: 13.02.2024) [Google Scholar]
- A. Richter, R. Müller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, S.W. Glunz, Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses, Nat. Energy 6, 429 (2021) [CrossRef] [Google Scholar]
- J. Peter Seif, A. Descoeudres, M. Filipič, F. Smole, M. Topič, Z. Charles Holman, S. De Wolf, C. Ballif, Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells, J. Appl. Phys. 115, 024502 (2014) [Google Scholar]
- Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, Current losses at the front of silicon heterojunction solar cells, IEEE J. Photovolt. 2, 7 (2012) [CrossRef] [Google Scholar]
- J. Melskens, B.W.H. Van De Loo, B. Macco, L.E. Black, S. Smit, W.M.M. Kessels, Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects, IEEE J. Photovolt. 8, 373 (2018) [CrossRef] [Google Scholar]
- L.E. Black, B.W.H. van de Loo, B. Macco, J. Melskens, W.J.H. Berghuis, W.M.M. Kessels, Explorative studies of novel silicon surface passivation materials: considerations and lessons learned, Sol. Energy Mater. Sol. Cells 188, 182 (2018) [CrossRef] [Google Scholar]
- C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. Mcdonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Hole selective MoOx contact for silicon solar cells, Nano Lett. 14, 967 (2014) [CrossRef] [PubMed] [Google Scholar]
- C. Battaglia, S.M. De Nicolás, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, Silicon heterojunction solar cell with passivated hole selective MoOx contact, Appl. Phys. Lett. 104, 1 (2014) [Google Scholar]
- J. Bullock, D. Yan, A. Cuevas, Y. Wan, C. Samundsett, n- and p-typesilicon solar cells with molybdenum oxide hole contacts, Energy Proc. 77, 446 (2015) [CrossRef] [Google Scholar]
- J. Bullock, M. Hettick, J. Geissbühler, A.J. Ong, T. Allen, C.M. Sutter-Fella, T. Chen, H. Ota, E.W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Efficient silicon solar cells with dopant-free asymmetric heterocontacts, Nat. Energy 1, 1 (2016) [Google Scholar]
- L. Cao, P. Procel, A. Alcañiz, J. Yan, F. Tichelaar, E. Özkol, Y. Zhao, C. Han, G. Yang, Z. Yao, M. Zeman, R. Santbergen, L. Mazzarella, O. Isabella, Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i) a-Si:H/MoOx interface, Prog. Photovolt.: Res. Appl. 31, 1245 (2022) [Google Scholar]
- J. Geissbühler, J. Werner, S. Martin De Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector, Appl. Phys. Lett. 107, 081601 (2015) [Google Scholar]
- L. Neusel, M. Bivour, M. Hermle, Selectivity issues of MoOx-based hole contacts, Energy Proc. 124, 425 (2017) [CrossRef] [Google Scholar]
- S.W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, M. Hermle, The irresistible charm of a simple current flow pattern-25% with a solar cell featuring a full-area back contact, in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (München, Germany, 2015), p. 259 [Google Scholar]
- M. Boccard, X. Yang, K. Weber, Z.C. Holman, Passivation and carrier selectivity of TiO2 contacts combined with different passivation layers and electrodes for silicon solar cells, in Conference Record of the IEEE Photovoltaic Specialists Conference (2016), pp. 2403–2407 [Google Scholar]
- T. Kamioka, Y. Hayashi, Y. Isogai, K. Nakamura, Y. Ohshita, Effects of annealing temperature on workfunction of MoOx at MoOx/SiO2 interface and process-induced damage in indium tin oxide/MoOx/SiOx/Si stack, Jpn. J. Appl. Phys. 57, 076501 (2018) [CrossRef] [Google Scholar]
- J. Tong, T.T. Le, W. Liang, M.A. Hossain, K.R. McIntosh, P. Narangari, S. Armand, T.C. Kho, K.T. Khoo, Y. Zakaria, A.A. Abdallah, S. Surve, M. Ernst, B. Hoex, K.C. Fong, Impact of pregrown SiOx on the carrier selectivity and thermal stability of molybdenum-oxide-passivated contact for Si solar cells, ACS Appl. Mater. Interfaces 13, 36426 (2021) [Google Scholar]
- M. Bivour, B. Macco, J. Temmler, W.M.M. Kessels, M. Hermle, Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells, Energy Proc. 92, 443 (2016) [CrossRef] [Google Scholar]
- B.E. Davis, N.C. Strandwitz, Aluminum oxide passivating tunneling interlayers for molybdenum oxide hole-selective contacts, IEEE J. Photovolt. 10, 722 (2020) [CrossRef] [Google Scholar]
- M.T.S.K. Ah Sen, P. Bronsveld, A. Weeber, Thermally stable MoOx hole selective contact with Al2O3 interlayer for industrial size silicon solar cells, Sol. Energy Mater. Sol. Cells 230, 111139 (2021) [CrossRef] [Google Scholar]
- V. Naumann, M. Otto, R.B. Wehrspohn, C. Hagendorf, Chemical and structural study of electrically passivating Al2O3/Si interfaces prepared by atomic layer deposition, J. Vacuum Sci. Technol. A 30, 04D106 (2012) [CrossRef] [Google Scholar]
- O. Renault, L.G. Gosset, D. Rouchon, A. Ermolieff, Angle-resolved x-ray photoelectron spectroscopy of ultrathin Al2O3 films grown by atomic layer deposition, J. Vac. Sci. Technol. A 20, 1867 (2002) [CrossRef] [Google Scholar]
- A. Sarkar, Device simulation using Silvaco ATLAS tool, Technology Computer Aided Design (CRC Press, Boca Raton, Florida, USA, 2018), p. 203–252 [Google Scholar]
- G.J.M. Janssen, M.T.S.K. Ah Sen, P.C.P. Bronsveld, A simplified model to simulate passivating & selective hole-collecting contacts, in Proceeding 36th European Photovoltaic Solar Energy Conference and Exhibition (Marseille, France, 2019), pp. 2–8 [Google Scholar]
- U. Wurfel, A. Cuevas, P. Wurfel, Charge carrier separation in solar cells, IEEE J. Photovolt. 5, 461 (2015) [CrossRef] [Google Scholar]
- G. Janssen, M. Stodolny, I. Romijn, B. Geerligs, The role of the oxide in the carrier selectivity of metal/poly-Si/oxide contacts to silicon wafers, in Proceeding 33rd European Photovoltaic Solar Energy Conference and Exhibition (Amsterdam, The Netherlands, 2017), pp. 256–261 [Google Scholar]
- F. Feldmann, G. Nogay, J.I. Polzin, B. Steinhauser, A. Richter, A. Fell, C. Schmiga, M. Hermle, S.W. Glunz, A study on the charge carrier transport of passivating contacts, IEEE J. Photovolt. 8, 1503 (2018) [CrossRef] [Google Scholar]
- D.B.M. Klaassen, A unified mobility model for device simulation—I. Model equations and concentration dependence, Solid-State Electron. 35, 953 (1992) [Google Scholar]
- A. Richter, S. Glunz, F. Werner, J. Schmidt, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B 86, 165202 (2012) [CrossRef] [Google Scholar]
- L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells, J. Mater. Res. 32, 260 (2017) [CrossRef] [Google Scholar]
- B.B. Demaurex, S. De Wolf, A. Descoeudres, Z. Charles Holman, C. Ballif, Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering, Appl. Phys. Lett. 101, 171604 (2012) [Google Scholar]
- M.T.S.K. Ah Sen, A. Mewe, J. Melskens, J. Bolding, M. Van de Poll, A. Weeber, Soft deposition of TCOs by pulsed laser for high-quality ultra-thin poly-Si passivating contacts, J. Appl. Phys. 134, 154502 (2023) [Google Scholar]
- M. Bivour, C. Messmer, L. Neusel, F. Zähringer, J. Schön, S.W. Glunz, M. Hermle, Principles of carrier-selective contacts based on induced junctions, in Proceeding 33rd European PV Solar Energy Conference and Exhibition (Amsterdam, The Netherlands, 2017), pp. 25–29 [Google Scholar]
- S. Essig, J. Dréon, E. Rucavado, M. Mews, T. Koida, M. Boccard, J. Werner, J. Geissbühler, P. Löper, M. Morales-Masis, L. Korte, S. De Wolf, C. Balllif, Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics, Solar RRL 2, 1700227 (2018) [CrossRef] [Google Scholar]
- J.P. Seif, D. Menda, A. Descoeudres, L. Barraud, O. Özdemir, C. Ballif, , S. De Wolf, Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance, J. Appl. Phys. 120, 054501 (2016) [Google Scholar]
- A. Onno, C. Chen, Z.C. Holman, Electron and hole partial specific resistances: A framework to understand contacts to solar cells, in Conference Record of the IEEE Photovoltaic Specialists Conference (2019), pp. 2329–2333 [Google Scholar]
- D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbuhler, M. Despeisse, A. Hessler-Wyser, S. Nicolay, C. Ballif, ITO/MoOx/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration, IEEE J. Photovolt. 7, 1584 (2017) [CrossRef] [Google Scholar]
- J. Cho, N. Nawal, A. Hadipour, M. Recaman Payo, A. van der Heide, H.S. Radhakrishnan, M. Debucquoy, I. Gordon, J. Szlufcik, J. Poortmans, Interface analysis and intrinsic thermal stability of MoOx based hole-selective contacts for silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells 201, 110074 (2019) [CrossRef] [Google Scholar]
- C. Messmer, M. Bivour, J. Schön, S.W. Glunz, M. Hermle, J. Schon, S.W. Glunz, M. Hermle, Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts, IEEE J. Photovolt. 8, 456 (2018) [CrossRef] [Google Scholar]
- S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley-Interscience, 2006) [Google Scholar]
- R.T. Tung, Recent advances in Schottky barrier concepts, Mater. Sci. Eng. R Rep. 35, 1 (2001) [CrossRef] [Google Scholar]
- M. Liebhaber, M. Mews, L. Korte, T.F. Schulze, B. Rech, K. Lips, Valence band offset and hole transport across a-SiOx (0<x<2) passivation layers in silicon heterojunction solar cells, in 31st European Photovoltaic Solar Energy Conference and Exhibition (i), (2015) pp. 770–775 [Google Scholar]
- J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells, Appl. Phys. Lett. 105, 232109 (2014) [Google Scholar]
- R. Peibst, U. Römer, Y. Larionova, M. Rienäcker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Krügener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel, Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60 (2016) [CrossRef] [Google Scholar]
- J. Cho, N. Nawal, A. Hadipour, M. Recaman Payo, A. van der Heide, H.S. Radhakrishnan, M. Debucquoy, I. Gordon, J. Szlufcik, J. Poortmans, Interface analysis and intrinsic thermal stability of MoOx based hole-selective contacts for silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells 201, 110074 (2019) [CrossRef] [Google Scholar]
- B.W.H. van de Loo, B. Macco, M. Schnabel, M.K. Stodolny, A.A. Mewe, D.L. Young, W. Nemeth, P. Stradins, W.M.M. Kessels, On the hydrogenation of Poly-Si passivating contacts by Al2O3 and SiNx thin films, Sol. Energy Mater Sol. Cells 215, 110592 (2020) [Google Scholar]
- F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, Solar energy materials & solar cells efficient carrier-selective p- and n-contacts for Si solar cells, Sol. Energy Mater. Sol. Cells 131, 100 (2014) [CrossRef] [Google Scholar]
- M.T.Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3, Adv. Funct. Mater. 23, 215 (2013) [Google Scholar]
- W.J.H. Berghuis, M. Helmes, J. Melskens, R.J. Theeuwes, W.M.M. Kessels, B. Macco, Extracting surface recombination parameters of germanium-dielectric interfaces by corona-lifetime experiments, J. Appl. Phys. 131, 195301 (2022) [CrossRef] [Google Scholar]
- W.J.H. Berghuis, J. Melskens, B. Macco, R.J. Theeuwes, L.E. Black, M.A. Verheijen, W.M.M. Kessels, Excellent surface passivation of germanium by a-Si: H/Al2O3 stacks, J. Appl. Phys. 130, 135303 (2021) [CrossRef] [Google Scholar]
- J. Melskens, R.J. Theeuwes, L.E. Black, W.J.H. Berghuis, B. Macco, P.C.P. Bronsveld, W.M.M. Kessels, Excellent passivation of n-type silicon surfaces enabled by pulsed-flow plasma-enhanced chemical vapor deposition of phosphorus oxide capped by aluminum oxide, Phys. Stat. Solidi 15, 2000399 (2021) [Google Scholar]
- W.J.H. Berghuis, J. Melskens, B. Macco, R.J. Theeuwes, M.A. Verheijen, W.M.M. Kessels, Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers, J. Mater. Res. 36, 571 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.