Issue
EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
Article Number 24
Number of page(s) 24
Section Modules and Systems
DOI https://doi.org/10.1051/epjpv/2023015
Published online 04 August 2023
  1. M.G. Chowdhury, A. Kladas, B. Herteleer, J. Cappelle, F. Catthoor, Sensitivity analysis of the state of the art silicon photovoltaic temperature estimation methods over different time resolution, in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (2021), pp. 1340–1343 [Google Scholar]
  2. G. Chowdhury et al., Novel computational fluid dynamics modeling of spatial convective heat transfer over PV-modules mounted on an inclined surface with an underlying air gap, in 35th European Photovoltaic Solar Energy Conference and Exhibition − EUPVSEC, BE: Wip Renewable Energies (2018), pp. 1182–1185 [Google Scholar]
  3. D. Goossens, H. Goverde, F. Catthoor, Effect of wind on temperature patterns, electrical characteristics, and performance of building-integrated and building-applied inclined photovoltaic modules, Solar Energy 170, 64 (2018) [CrossRef] [Google Scholar]
  4. H. Goverde et al., Spatial and temporal analysis of wind effects on PV modules: consequences for electrical power evaluation, Solar Energy 147, 292 (2017) [CrossRef] [Google Scholar]
  5. P. Manganiello et al., Tuning electricity generation throughout the year with PV module technology, Renew. Energy 160, 418 (2020) [CrossRef] [Google Scholar]
  6. I.T. Horváth et al., Photovoltaic energy yield modelling under desert and moderate climates: What-if exploration of different cell technologies, Solar Energy 173, 728 (2018) [CrossRef] [Google Scholar]
  7. G.G. Kim et al., Prediction model for PV performance with correlation analysis of environmental variables, IEEE J. Photovolt. 9, 832 (2019) [CrossRef] [Google Scholar]
  8. K. Trapani, M.R. Santafé, M. Redón Santafé, A review of floating photovoltaic installations: 2007-2013, Progr. Photovolt.: Res. Appl. 23, 524 (2015) [CrossRef] [Google Scholar]
  9. J.O. Hirschfelder, C. Charles, F. Bird, R. Byron, Molecular theory of gases and liquids, University of Wisconsin. Naval Research Laboratory ( Wiley, New York, 1954) [Google Scholar]
  10. M. Gouldrick, Why Is It Cooler By the Lake? 2019. [Online]. Available: https://spectrumlocalnews.com/nys/rochester/blog/2019/04/11/cooler-by-the-lake [Google Scholar]
  11. Y.-G. Lee, H.-J. Joo, S.-J. Yoon, Design and installation of floating type photovoltaic energy generation system using FRP members, Solar Energy 108, 13 (2014) [CrossRef] [Google Scholar]
  12. B. Sutanto, Y.S. Indartono, Computational fluid dynamic (CFD) modelling of floating photovoltaic cooling system with loop thermosiphon, AIP Conf. Proc. 2062, 20011 (2019) [Google Scholar]
  13. M. Rosa-Clot, G.M. Tina, S. Nizetic, Floating photovoltaic plants and wastewater basins: an Australian project, Energy Procedia 134, 664 (2017) [CrossRef] [Google Scholar]
  14. N. Dang Anh Thi, The global evolution of floating solar PV. Working paper, IFC (2017) Available: https://www.researchgate.net/publication/321461989 [Google Scholar]
  15. S.Z. Golroodbari, W. van Sark, Simulation of performance differences between offshore and land-based photovoltaic systems, Progr. Photovolt.: Res. Appl. 28, 873 (2020) [CrossRef] [Google Scholar]
  16. V. Durković, Ž. Đurišić, Analysis of the potential for use of floating PV power plant on the skadar lake for electricity supply of aluminium plant in montenegro, Energies (Basel) 10, 1505 (2017) [CrossRef] [Google Scholar]
  17. G.M. Tina, F. Bontempo Scavo, L. Merlo, F. Bizzarri, Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants, Appl. Energy 281, 116084 (2021) [CrossRef] [Google Scholar]
  18. W. Luo et al., Performance loss rates of floating photovoltaic installations in the tropics, Solar Energy 219, 58 (2021) [CrossRef] [Google Scholar]
  19. G. Blengini, Floating photovoltaic systems: state of art, feasibility study in Florida and computational fluid dynamic analysis on hurricane resistance, Politecnico di Torino (2020), Available: https://webthesis.biblio.polito.it/16339/ [Google Scholar]
  20. E.M. do Sacramento, P.C.M. Carvalho, J.C. de Araújo, D.B. Riffel, R.M. da C. Corrêa, J.S.P. Neto, Scenarios for use of floating photovoltaic plants in Brazilian reservoirs, IET Renew. Power Gener. 9, 1019 (2015) [CrossRef] [Google Scholar]
  21. R. Oblack, Why Is Wind Speed Slower Over Land than Over Ocean?, ThoughtCo. (2019). Available: https://www.thoughtco.com/wind-speed-slower-over-land-3444038 [Google Scholar]
  22. H. Liu, V. Krishna, J.L. Leung, T. Reindl, L. Zhao, Field experience and performance analysis of floating PV technologies in the tropics, Progr. Photovolt.: Res. Appl. 26, 957 (2018) [CrossRef] [Google Scholar]
  23. H. Ziar et al., Innovative floating bifacial photovoltaic solutions for inland water areas, Progr. Photovolt.: Res. Appl. 29, 725 (2020) [Google Scholar]
  24. C.L. Waithiru et al., Prediction model of photovoltaic module temperature for power performance of floating PVs, Energies (Basel) 11, 447 (2018) [CrossRef] [Google Scholar]
  25. I.M. Peters, A.M. Nobre, On module temperature in floating PV systems, in 2020 47th F IEEES Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada (IEEE, 2020), pp. 238–241 [Google Scholar]
  26. H.S. Jeong, J. Choi, H.H. Lee, H.S. Jo, A study on the power generation prediction model considering environmental characteristics of floating photovoltaic system, Appl. Sci. 10, 4526 (2020) [CrossRef] [Google Scholar]
  27. S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F.B. Scavo, G.M. Tina, Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems, J. Clean Prod. 278, 124285 (2021) [CrossRef] [Google Scholar]
  28. P. Rosa-Clot, Chapter 9-FPV and environmental compatibility, in Floating PV Plants, edited by M. Rosa-Clot, G. Marco (Tina Academic Press, 2020), pp. 101–118 [CrossRef] [Google Scholar]
  29. N. Yadav, M. Gupta, K. Sudhakar, Energy assessment of floating photovoltaic system, in 2016 International Conference on Electrical Power and Energy Systems (ICEPES) (2016), pp. 264–269 [Google Scholar]
  30. Z.A.A. Majid, M.H. Ruslan, K. Sopian, M.Y. Othman, M.S.M. Azmi, Study on performance of 80 watt floating photovoltaic panel, J. Mech. Eng. Sci. 7, 1150 (2014) [CrossRef] [Google Scholar]
  31. O. Levenspiel, The three mechanisms of heat transfer: conduction, convection, and radiation, in Engineering Flow and Heat Exchange (Springer, 2014), pp. 179–210 [Google Scholar]
  32. J. Garro Etxebarria, Tool box for the design and simulation of a floating bifacial PV plant with reflectors (2018). Available: https://repository.tudelft.nl/islandora/object/uuid%3Aa86fd44c-379c-48f8-a737-2c0b01086384 [Google Scholar]
  33. A. Goswami, P. Sadhu, U. Goswami, P.K. Sadhu, Floating solar power plant for sustainable development: a techno-economic analysis, Environ. Prog. Sustain. Energy 38, e13268 (2019) [CrossRef] [Google Scholar]
  34. Y.K. Choi, W.S. Choi, J.H. Lee, Empirical research on the efficiency of floating PV systems, Sci. Adv. Mater. 8, 681 (2016) [CrossRef] [Google Scholar]
  35. M. Kumar, A. Kumar, Experimental validation of performance and degradation study of canal-top photovoltaic system, Appl. Energy 243, 102 (2019) [CrossRef] [Google Scholar]
  36. R. Cazzaniga, M. Cicu, M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, C. Ventura Floating photovoltaic plants: performance analysis and design solutions, Renew. Sustain. Energy Rev. 81, 1730 (2018) [CrossRef] [Google Scholar]
  37. A. Awasthi et al., Review on sun tracking technology in solar PV system, Energy Rep. 6, 392 (2020) [CrossRef] [Google Scholar]
  38. R. Cazzaniga, M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, Floating tracking cooling concentrating (FTCC) systems, in 2012 38th IEEE Photovoltaic Specialists Conference (2012), pp. 514–519 [Google Scholar]
  39. M. Rosa-Clot, G.M. Tina, Chapter 6–Cooling systems, in Floating PV Plants, edited by M. Rosa-Clot, G. Marco Tina (Academic Press, 2020), pp. 67–77 [CrossRef] [Google Scholar]
  40. Y.-K. Choi, A study on power generation analysis of floating PV system considering environmental impact, Int. J. Softw. Eng. Appl. 8, 75 (2014) [Google Scholar]
  41. D. Mittal, B.K. Saxena, K.V.S. Rao, Comparison of floating photovoltaic plant with solar photovoltaic plant for energy generation at Jodhpur in India, in 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy) (2017), pp. 1–6 [Google Scholar]
  42. A. el Hammoumi, A. Chalh, A. Allouhi, S. Motahhir, A. el Ghzizal, A. Derouich, Design and construction of a test bench to investigate the potential of floating PV systems, J. Clean. Prod. 278, 123917 (2021) [CrossRef] [Google Scholar]
  43. J.J. Wysocki, P. Rappaport, Effect of temperature on photovoltaic solar energy conversion, J. Appl. Phys. 31, 571 (1960) [CrossRef] [Google Scholar]
  44. M. Dörenkämper, A. Wahed, A. Kumar, M. de Jong, J. Kroon, T. Reindl, The cooling effect of floating PV in two different climate zones: a comparison of field test data from the Netherlands and Singapore, Solar Energy 214, 239 (2021) [CrossRef] [Google Scholar]
  45. A.P. Sukarso, K.N. Kim, Cooling effect on the floating solar PV: performance and economic analysis on the case of West Java Province in Indonesia, Energies (Basel) 13, 2126 (2020) [CrossRef] [Google Scholar]
  46. G.H. Gim, D.S. Kim, W.R. Kim, B. Kim, S. Kang, C. Lim, Estimation of Power Generation of 6kW Prototype Aquavoltaic System through Simulation (2019), p. 54. Available: http://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE09319332 [Google Scholar]
  47. M. Vega Orrego, Evaluación experimental y numérica de módulos fotovoltaicos bifaciales flotantes en comparación con sistemas monofaciales y terrestres, Repositorio Institucional Universidad EIA (2019). Available: https://repository.eia.edu.co/handle/11190/2497 [Google Scholar]
  48. L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, R. Wennersten, Evaluating the benefits of integrating floating photovoltaic and pumped storage power system, Energy Convers. Manag. 194, 173 (2019) [CrossRef] [Google Scholar]
  49. A.K. Singh, D. Boruah, L. Sehgal, A.P. Ramaswamy, Feasibility study of a grid-tied 2MW floating solar PV power station and e-transportation facility using ‘SketchUp Pro’ for the proposed smart city of Pondicherry in India, J. Smart Cities 2, 49 (2019) [Google Scholar]
  50. S. Oliveira-Pinto, J. Stokkermans, Assessment of the potential of different floating solar technologies − overview and analysis of different case studies, Energy Convers. Manag. 211, 112747 (2020) [CrossRef] [Google Scholar]
  51. Y. Du, W. Tao, Y. Liu, J. Jiang, H. Huang, Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules, Solar Energy 146, 257 (2017) [CrossRef] [Google Scholar]
  52. Solar Panel Frame, PV Frame, Aluminium Frame Profile. Available: http://www.alu-solarframe.com/html_products/Solar-Panel-Frame-with-Corner-Key-114.html [Google Scholar]
  53. C. Ferrer-Gisbert, J.J. Ferrán-Gozálvez, M. Redón-Santafé, P. Ferrer-Gisbert, F.J. Sánchez-Romero, J.B. Torregrosa-Soler, A new photovoltaic floating cover system for water reservoirs, Renew. Energy 60, 63 (2013) [CrossRef] [Google Scholar]
  54. M. Rosa-Clot, G.M. Tina, Chapter 3–Geographic potential, in Floating PV Plants, edited by M. Rosa-Clot, G. Marco Tina (Academic Press, 2020), pp. 19–32 [Google Scholar]
  55. M.Z. Jacobson, V. Jadhav, World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels, Solar Energy 169, 55 (2018) [CrossRef] [Google Scholar]
  56. M. Redón Santafé, J.B. Torregrosa Soler, F.J. Sánchez Romero, P.S. Ferrer Gisbert, J.J. Ferrán Gozálvez, C.M. Ferrer Gisbert, Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs, Energy 67, 246 (2014) [CrossRef] [Google Scholar]
  57. C.M. Jubayer, K. Siddiqui, H. Hangan, CFD analysis of convective heat transfer from ground mounted solar panels, Solar Energy 133, 556 (2016) [CrossRef] [Google Scholar]
  58. S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions, Appl. Therm Eng. 30, 1488 (2010) [CrossRef] [Google Scholar]
  59. J. Kim, S. Bae, Y. Yu, Y. Nam, Experimental and numerical study on the cooling performance of fins and metal mesh attached on a photovoltaic module, Energies (Basel) 13, 85 (2020) [Google Scholar]
  60. P. Nyanor et al., 3D finite element method modelling and simulation of the temperature of crystalline photovoltaic module, Int. J. Res. Eng. Technol. 4, 378 (2015) [Google Scholar]
  61. J.-Y. Wang, Q.-B. Yang, Experimental study on mechanical properties of concrete confined with plastic pipe, ACI Mater. J. 107, 132 (2010) [Google Scholar]
  62. Thermoplastic High Density Polyethylene (HDPE), SubsTech. 2013. Available: https://www.substech.com/dokuwiki/doku.php?id=thermoplastic_high_density_polyethylene_hdpe [Google Scholar]
  63. M.W. Woo et al., Melting behavior and thermal properties of high density polythylene, Polym. Eng. Sci. 35, 151 (1995) [CrossRef] [Google Scholar]
  64. H. Oosterbaan, M. Janiszewski, L. Uotinen, T. Siren, M. Rinne, Numerical thermal back-calculation of the kerava solar village underground thermal energy storage, Proc. Eng. 191, 352 (2017) [CrossRef] [Google Scholar]
  65. T. Instruments, Testing the Thermal Conductivity Of Soil using TLS-100, Thermtest Inc. [Online]. Available: https://thermtest.com/applications/soil-thermal-conductivity-tls [Google Scholar]
  66. J.J. Franke, A. Hellsten, H. Schlünzen, B. Carissimo, Best practice guideline for the CFD simulation of flows in the urban environment 44, Meteorolog. Inst. (2007). Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Best+practice+guideline+for+the+CFD+simulation+of+flows+in+the+urban+environment#0 [Google Scholar]
  67. Y. Tominaga et al., AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn. 96, 1749 (2008) [CrossRef] [Google Scholar]
  68. G. Notton, C. Cristofari, M. Mattei, P. Poggi, Modelling of a double-glass photovoltaic module using finite differences, Appl. Therm. Eng. 25, 2854 (2005) [CrossRef] [Google Scholar]
  69. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 40, 254 (2002) [Google Scholar]
  70. M. Shademan, R.M. Barron, R. Balachandar, H. Hangan, Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations, Can. J. Civil Eng. 41, 728 (2014) [CrossRef] [Google Scholar]
  71. S. Nižetić, F. Grubišić-Čabo, I. Marinić-Kragić, A.M. Papadopoulos, Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels, Energy 111, 211 (2016) [CrossRef] [Google Scholar]
  72. R. Harvey, L. Lye, A. Khan, R. Paterson, The influence of air temperature on water temperature and the concentration of dissolved oxygen in newfoundland rivers, Can. Water Resour. J. 36, 171 (2011) [CrossRef] [Google Scholar]
  73. E.L. Cussler, E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, 2009) [CrossRef] [Google Scholar]
  74. R. Jain, T.J. Tautges, PostBL: Post-mesh boundary layer mesh generation tool, in Proceedings of the 22nd International Meshing Roundtable (2014), pp. 331–348 [CrossRef] [Google Scholar]
  75. B. Blocken, T. Defraeye, D. Derome, J. Carmeliet, High-resolution CFD simulations for forced convective heat transfer coefficients at the facade of a low-rise building, Build. Environ. 44, 2396 (2009) [CrossRef] [Google Scholar]
  76. P.J. Roache, Perspective: a method for uniform reporting of grid refinement studies, J. Fluids Eng. 116, 405 (1994) [CrossRef] [Google Scholar]
  77. F.E. Division et al., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. 130, 078001 (2008) [CrossRef] [Google Scholar]
  78. A. lal Basediya, D.V.K. Samuel, V. Beera, Evaporative cooling system for storage of fruits and vegetables − a review, J. Food Sci. Technol. 50, 429 (2013) [CrossRef] [Google Scholar]
  79. A.K. Abdulrazzaq, B. Plesz, G. Bognár, A novel method for thermal modelling of photovoltaic modules/cells under varying environmental conditions, Energies (Basel) 13, 3318 (2020) [CrossRef] [Google Scholar]
  80. J. Zhou, Q. Yi, Y. Wang, Z. Ye, Temperature distribution of photovoltaic module based on finite element simulation, Solar Energy 111, 97 (2015) [CrossRef] [Google Scholar]
  81. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Solar Energy 83, 614 (2009) [CrossRef] [Google Scholar]
  82. F.B. Scavo, G.M. Tina, A. Gagliano, S. Nižetić, An assessment study of evaporation rate models on a water basin with floating photovoltaic plants, Int. J. Energy Res. (2020). Available: https://www.bib.irb.hr/1038721?rad=1038721 [Google Scholar]
  83. S.H. Hwang, D.Y. Lee, O. Geuk Kwon, J.H. Lee, The electrical characteristics of the modules according to the environment of the floating photovoltaic system, J. Korean Inst. Electr. Electron. Mater. Eng. 31, 283 (2018) [Google Scholar]
  84. F. Arpino, G. Cortellessa, A. Frattolillo, Experimental and numerical assessment of photovoltaic collectors performance dependence on frame size and installation technique, Solar Energy 118, 7 (2015) [CrossRef] [Google Scholar]
  85. A. Glick et al., Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms, Solar Energy 207, 173 (2020) [CrossRef] [Google Scholar]
  86. M.J. Wilson, M.C. Paul, Effect of mounting geometry on convection occurring under a photovoltaic panel and the corresponding efficiency using CFD, Solar Energy 85, 2540 (2011) [CrossRef] [Google Scholar]
  87. Y. Ueda, K. Kurokawa, M. Konagai, S. Takahashi, A. Terazawa, H. Ayaki, Five years demonstration results of floating pv systems with water spray cooling, in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 3926–3928 [Google Scholar]
  88. P.A. Mirzaei, E. Paterna, J. Carmeliet, Investigation of the role of cavity airflow on the performance of building-integrated photovoltaic panels, Solar Energy 107, 510 (2014) [CrossRef] [Google Scholar]
  89. O. Turgut, N. Onur, Three dimensional numerical and experimental study of forced convection heat transfer on solar collector surface, Int. Commun. Heat Mass Transfer 36, 274 (2009) [CrossRef] [Google Scholar]
  90. Y.-Y. Wu, S.-Y. Wu, L. Xiao, Numerical study on convection heat transfer from inclined PV panel under windy environment, Solar Energy 149, 1 (2017) [CrossRef] [Google Scholar]
  91. H. Bahaidarah, A. Subhan, P. Gandhidasan, S. Rehman, Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, Energy 59, 445 (2013) [CrossRef] [Google Scholar]
  92. S. Desai, M. Wagh, N. Shinde, A review on floating solar photovoltaic power plants, Int. J. Sci. Eng. Res. 6, 789 (2017) [Google Scholar]
  93. I.S. Rodrigues, G.L.B. Ramalho, P.H.A. Medeiros, Potential of floating photovoltaic plant in a tropical reservoir in Brazil, J. Environ. Plann. Manag. 63, 2334 (2020) [CrossRef] [Google Scholar]
  94. K.S. Hayibo, P. Mayville, R.K. Kailey, J.M. Pearce, Water conservation potential of self-funded foam-based flexible surface-mounted floatovoltaics, Energies (Basel) 13, 6285 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.