EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
Article Number 7
Number of page(s) 9
Section Modelling
Published online 07 February 2023
  1. P. Kunze, J. Greulich, S. Rein, K. Ramspeck, M. Hemsendorf, A. Vetter, M. Demant, Efficient deployment of deep neural networks for quality inspection of solar cells using smart labeling, in 37th European PV Solar Energy Conference and Exhibition (2020), Vol. 7, p. 11 [Google Scholar]
  2. M. Alt, S. Fischer, S. Schenk, S. Zimmermann, K. Ramspeck, M. Meixner, Electroluminescence imaging and automatic cell classification in mass production of silicon solar cells, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC) (2018), pp. 3298–3304 [CrossRef] [Google Scholar]
  3. P. Kunze, S. Rein, M. Hemsendorf, K. Ramspeck, M. Demant, Learning an empirical digital twin from measurement images for a comprehensive quality inspection of solar cells, Sol. RRL 6, 2100483 (2022) [CrossRef] [Google Scholar]
  4. M. Demant, P. Virtue, A. Kovvali, S. Yu, S. Rein, Learning Quality Rating of As-Cut mc-Si Wafers via Convolutional Regression Networks, IEEE J. Photovolt. 9, 1064 (2019) [CrossRef] [Google Scholar]
  5. S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, C. Riess, Automatic classification of defective photovoltaic module cells in electroluminescence images, Sol. Energy 185, 455 (2019) [CrossRef] [Google Scholar]
  6. O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks, arXiv:1711.07064 (2017) [Google Scholar]
  7. T.M. Nimisha, A.K. Singh, A.N. Rajagopalan, Blur-Invariant Deep Learning for Blind-Deblurring, in 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 4762–4770 [CrossRef] [Google Scholar]
  8. K. Zhang, W. Ren, W. Luo, W. Lai, B. Stenger, M. Yang, H. Li, Deep Image Deblurring: A Survey, arXiv:2201.10700 (2022) [Google Scholar]
  9. A. Levin, Y. Weiss, F. Durand, W.T. Freeman, Understanding and evaluating blind deconvolution algorithms, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 1964–1971 [CrossRef] [Google Scholar]
  10. R. Kohler, M. Hirsch, B. Mohler, B. Scholkopf, S. Harmeling, Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database, in Proceedings of the 12th European Conference on Computer Vision − Volume Part VII (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 27–40 [Google Scholar]
  11. J. Rim, H. Lee, J. Won, S. Cho, Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms, in Computer Vision − ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV (Springer-Verlag, Berlin, Heidelberg, 2020), pp. 184–201 [Google Scholar]
  12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks, Commun. ACM 63, 139 (2020) [Google Scholar]
  13. F. Lu, R. Niu, Z. Zhang, L. Guo, J. Chen, A Generative Adversarial Network-Based Fault Detection Approach for Photovoltaic Panel, Appl. Sci. 12, 1789 (2022) [Google Scholar]
  14. E. Jimenez-Delgado, A. Mendez-Porras, J. Alfaro-Velasco, Generative Adversarial Network for Synthetic Imaging Data of Sub-optimal Conditions in Photovoltaic Panels, in Information Technology and Systems, edited by A. Rocha, C. Ferras, A. Mendez Porras, E. Jimenez Delgado (Springer International Publishing, Cham, 2022), pp. 206–218 [CrossRef] [Google Scholar]
  15. L. Kurumundayil, H. Schremmer, S. Rein, M. Demant, Denoising of image data for DWS wafer characterization using generative adversarial networks, in 38th European PV Solar Energy Conference and Exhibition (2021), pp. 246–249 [Google Scholar]
  16. I. Zafirovska, M.K. Juhl, J.W. Weber, J. Wong, T. Trupke, Detection of Finger Interruptions in Silicon Solar Cells Using Line Scan Photoluminescence Imaging, IEEE J. Photovolt. 7, 1496 (2017) [CrossRef] [Google Scholar]
  17. O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2015) Vol. 9351, pp. 234–241 [Google Scholar]
  18. P. Isola, J.Y. Zhu, T. Zhou, A. Efros, Image-to-image translation with conditional adversarial networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 5967–5976 [Google Scholar]
  19. A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, R. Webb, Learning from simulated and unsupervised images through adversarial training arXiv:1612.07828 (2016) [Google Scholar]
  20. R. Preu, E. Lohmuller, S. Lohmuller, P. Saint-Cast, J. Greulich, Passivated emitter and rear cell–Devices, technology, and modeling, Appl. Phys. Rev. 7, 041315 (2020) [CrossRef] [Google Scholar]
  21. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., in Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019), pp. 8024–8035 [Google Scholar]
  22. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2818–2826 [Google Scholar]
  23. D. Kingma, J. Ba, in International Conference on Learning Representations (2014) [Google Scholar]
  24. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (The MIT Press, 1964) [Google Scholar]
  25. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13, 600 (2004) [CrossRef] [Google Scholar]
  26. D. Freedman, R. Pisani, R. Purves, Pisani, R. Purves, Statistics, 4th edn. (WW Norton & Company, New York, 2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.