Issue |
EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 11 | |
Section | Modelling | |
DOI | https://doi.org/10.1051/epjpv/2023005 | |
Published online | 27 February 2023 |
- Statistisches Bundesamt (Destatis), 2021, 13 Umwelt, Energie und Mobilität, Auszug aus dem Datenreport 2021 [Google Scholar]
- G. Alves dos Reis Benatto et al., Drone-based daylight electroluminescence imaging of PV modules, IEEE J. Photovolt. 10, 872 (2020) [CrossRef] [Google Scholar]
- D. Lausch, M. Patzold, M. Rudolph, C.-M. Lin, J. Fröbel, K. Kaufmann, Magnetic field imaging (MFI) of solar modules in Proc. of the EU-PVSEC, Brussels (2018), pp. 1060–1064 [Google Scholar]
- A. Paduthol, O. Kunz, K. Kaufmann, M. Patzold, D. Lausch, T. Trupke, Magnetic field imaging: strengths and limitations in characterising solar cells, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019), pp. 0822–0824 [CrossRef] [Google Scholar]
- O. Kunz et al., Investigating metal-semiconductor contacts in solar cells using magnetic field measurements, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019), pp. 2764–2768 [CrossRef] [Google Scholar]
- K. Kaufmann, D. Lausch, C. Lin, M. Rudolph, D. Hahn, M. Patzold, Evaluation of the quality of solder joints within silicon solar modules using magnetic field imaging, Phys. Stat. Sol. A 218, 2000292 (2021) [Google Scholar]
- N. Ødegaard, A.O. Knapskog, C. Cochin, J. Louvigne, Classification of ships using real and simulated data in a convolutional neural network, in 2016 IEEE Radar Conference (RadarConf) (2016), pp. 1–6 [Google Scholar]
- T. Gantala, K. Balasubramaniam, DPAI: a data-driven simulation-assisted-physics learned AI model for transient ultrasonic wave propagation, Ultrasonics 121, 106671 (2022) [CrossRef] [PubMed] [Google Scholar]
- H.Y. Hsiao, K.N. Chiang, AI-assisted reliability life prediction model for wafer-level packaging using the random forest method, J. Mech. 37, 28 (2021) [Google Scholar]
- Y. Gao, X. Liu, J. Xiang, FEM simulation-based generative adversarial networks to detect bearing faults, IEEE Trans. Ind. Inf. 16, 4961 (2020) [CrossRef] [Google Scholar]
- G.L. Pollack, D.R. Stump, Electromagnetism (Addison-Wesley, 2001), ISBN 13: 9780805385670 [Google Scholar]
- U. Zeller, D. Lausch, M. Pander, K. Kaufmann, S. Slaby, S. Schoenfelder, Comparison of magnetic field imaging (MFI) and magnetic field simulation of silicon solar cells, AIP Conf. Proc. 2147, 020021 (2019) [CrossRef] [Google Scholar]
- Z. Tian, C. Shen, H. Chen, T. He, FCOS: Fully Convolutional One-Stage Object Detection (2019), arXiv:1904.01355 [Google Scholar]
- Y. Wang, Z. Xu, H. Shen, B. Cheng, L. Yang, CenterMask: single shot instance segmentation with point representation (2020), arXiv:2004.04446 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.