Open Access
Issue
EPJ Photovolt.
Volume 12, 2021
Article Number 4
Number of page(s) 15
Section Modelling
DOI https://doi.org/10.1051/epjpv/2021004
Published online 03 November 2021
  1. J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016) [Google Scholar]
  2. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014) [Google Scholar]
  3. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, Chem. Rev. 120, 7867 (2020) [Google Scholar]
  4. I.E. Castelli, J.M. Garca-Lastra, K.S. Thygesen, K.W. Jacobsen, APL Mater. 2, 081514 (2014) [Google Scholar]
  5. K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., ACS Energy Lett. 3, 428 (2018) [Google Scholar]
  6. Z. Song, C.L. McElvany, A.B. Phillips, I. Celik, P.W. Krantz et al., Energy Environ. Sci. 10, 1297 (2017) [Google Scholar]
  7. P. Roy, N.K. Sinha, S. Tiwari, A. Khare, Sol. Energy 198, 665 (2020) [Google Scholar]
  8. NREL, Solar cell efficiency chart (Accessed on 31 July 2021) [Google Scholar]
  9. J. Zhang, W. Zhang, H.-M. Cheng, S.R.P. Silva, Mater. Today 39, 66 (2020) [Google Scholar]
  10. F. Gao, Y. Zhao, X. Zhang, J. You, Adv. Energy Mater. 10, 1902650 (2020) [Google Scholar]
  11. A. Singh, F. Matteocci, H. Zhu, D. Rossi, S. Mejaouri, S. Cacovich et al., Solar RRL 5, 2100277 (2021) [Google Scholar]
  12. E. Aydin, M. De Bastiani, S. De Wolf, Adv. Mater. 31, 1900428 (2019) [Google Scholar]
  13. E. Zojer, T.C. Taucher, O.T. Hofmann, Adv. Mater. Interfaces 6, 1900581 (2019) [Google Scholar]
  14. L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. Liu, M. Rusu, C.M. Wolff, N. Phung et al., Energy Environ. Sci. 14, 1429 (2021) [Google Scholar]
  15. Y. Zhou, J. Hu, Y. Wu, R. Qing, C. Zhang, X. Xu, M. Jiang, J. Photonics Energy 9, 040901 (2019) [Google Scholar]
  16. S. Rühle, Sol. Energy 130, 139 (2016) [Google Scholar]
  17. P. Colter, B. Hagar, S. Bedair, Crystals 8, 445 (2018) [Google Scholar]
  18. M. Yamaguchi, K.-H. Lee et al., J. Phys. D: Appl. Phys. 51, 133002 (2018) [Google Scholar]
  19. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky et al., J. Phys. Chem. Lett. 5, 1035 (2014) [Google Scholar]
  20. M. Anaya, G. Lozano, M.E. Calvo, H. Mguez, Joule 1, 769 (2017) [Google Scholar]
  21. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen et al., ACS nano 8, 1674 (2014) [Google Scholar]
  22. Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang et al., Adv. Funct. Mater. 30, 1908298 (2020) [Google Scholar]
  23. M. De Bastiani, A.J. Mirabelli, Y. Hou, F. Gota, E. Aydin, T.G. Allen et al., Nat. Energy 6, 167 (2021) [Google Scholar]
  24. E. Lamanna, F. Matteocci, E. Calabrò, L. Serenelli, E. Salza, L. Martini et al., Joule 4, 865 (2020) [Google Scholar]
  25. Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. Xiao, M. Cheng et al., Sci. Bull. 66, 621 (2021) [Google Scholar]
  26. S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan, M. Ren et al., Nano Energy 78, 105238 (2020) [Google Scholar]
  27. P. Wang, Y. Zhao, T. Wang, Appl. Phys. Rev. 7, 031303 (2020) [Google Scholar]
  28. M. Daboczi, J. Kim, J. Lee, H. Kang, I. Hamilton, C.-T. Lin et al., Adv. Funct. Mater. 30, 2001482 (2020) [Google Scholar]
  29. D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song, C.R. Grice et al., Nat. Energy 3, 1093 (2018) [Google Scholar]
  30. Y. Yao, F. Lv, L. Luo, L. Liao, G. Wang, D. Liu, C. Xu, G. Zhou, X. Zhao, Q. Song, Solar RRL 4, 1900396 (2020) [Google Scholar]
  31. A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.-W. Liang, H.W. Hillhouse et al., Adv. Mater. 29, 1702140 (2017) [Google Scholar]
  32. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.-W. Wang et al., Science 354, 861 (2016) [Google Scholar]
  33. Y. Wang, M. Zhang, K. Xiao, R. Lin, X. Luo, Q. Han, H. Tan, J. Semicond. 41, 051201 (2020) [Google Scholar]
  34. T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Nat. Energy 3, 828 (2018) [Google Scholar]
  35. A. Singh, A. Gagliardi, Sol. Energy 187, 39 (2019) [Google Scholar]
  36. Q. Wali, N.K. Elumalai, Y. Iqbal, A. Uddin, R. Jose, Renew. Sustain. Energy Rev. 84, 89 (2018) [Google Scholar]
  37. H.Q. Tan, X. Zhao, E. Birgersson, F. Lin, H. Xue, Sol. Energy 216, 589 (2021) [Google Scholar]
  38. T. Todorov, O. Gunawan, S. Guha, Mol. Syst. Des. Eng. 1, 370 (2016) [Google Scholar]
  39. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, ACS Energy Lett. 3, 305 (2018) [Google Scholar]
  40. S. Moghadamzadeh, I.M. Hossain, S. Gharibzadeh, T. Abzieher, H. Pham, H. Hu et al., J. Mater. Chem. A 8, 24608 (2020) [Google Scholar]
  41. B. Abdollahi Nejand, I.M. Hossain, M. Jakoby, S. Moghadamzadeh, T. Abzieher, S. Gharibzadeh et al., Adv. Energy Mater. 10, 1902583 (2020) [Google Scholar]
  42. M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Nano-Micro Lett. 11, 58 (2019) [Google Scholar]
  43. C. Honsberg, S. Bowden, Photovoltaic education network (2021), https://www.pveducation.org/pvcdrom/tandem-cells [Google Scholar]
  44. G.E. Eperon, M.T. Hörantner, H.J. Snaith, Nat. Rev. Chem. 1, 0095 (2017) [Google Scholar]
  45. A. De Vos, J. Phys. D: Appl. Phys. 13, 839 (1980) [Google Scholar]
  46. A. Gagliardi, M.A. der Maur, D. Gentilini, F. di Fonzo, A. Abrusci et al., Nanoscale 7, 1136 (2015) [Google Scholar]
  47. M.A. der Maur, G. Penazzi, G. Romano, F. Sacconi, A. Pecchia, A. Di Carlo, IEEE Trans. Electr. Dev. 58, 1425 (2011) [Google Scholar]
  48. A. Gagliardi, S. Wang, T. Albes, Org. Electron. 59, 171 (2018) [Google Scholar]
  49. M. Darwish, A. Gagliardi, J. Phys. D: Appl. Phys. 53, 105102 (2019) [Google Scholar]
  50. A. Singh, A. Gagliardi, in 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO) (IEEE, 2020), pp. 227–232 [Google Scholar]
  51. A. Singh, E. Radicchi, S. Fantacci, F. Nunzi, F. De Angelis et al., J. Phys. Chem. C 123, 14955 (2019) [Google Scholar]
  52. A. Singh, W. Kaiser, A. Gagliardi, Sol. Energy Mater Sol. 221, 110912 (2021) [Google Scholar]
  53. J.M. Richter, K. Chen, A. Sadhanala, J. Butkus, J.P. Rivett, R.H. Friend et al., Adv. Mater. 30, 1803379 (2018) [Google Scholar]
  54. E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulović, F.C. Grozema, S.D. Stranks et al., Nat. Mater. 16, 115 (2017) [Google Scholar]
  55. J.I. Pankove, Optical Processes in Semiconductors (Courier Corporation, 1975) [Google Scholar]
  56. X. Meng, Y. Wang, J. Lin, X. Liu, X. He, J. Barbaud, T. Wu, T. Noda, X. Yang, L. Han, Joule 4, 902 (2020) [Google Scholar]
  57. C. Ran, W. Gao, J. Li, J. Xi, L. Li, J. Dai, Y. Yang, X. Gao, H. Dong, B. Jiao et al., Joule 3, 3072 (2019) [Google Scholar]
  58. S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake, G.H. ten Brink et al., Adv. Energy Mater. 8, 1702019 (2018) [Google Scholar]
  59. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 29, 1701073 (2017) [Google Scholar]
  60. S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof, Nat. Commun. 10, 2560 (2019) [Google Scholar]
  61. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer Science & Business Media, 2012) [Google Scholar]
  62. J. Simmons, G. Taylor, Phys. Rev. B 4, 502 (1971) [Google Scholar]
  63. A.A. Said, J. Xie, Q. Zhang, Small 15, 1900854 (2019) [Google Scholar]
  64. L.-L. Deng, S.-Y. Xie, F. Gao, Adv. Electron. Mater. 4, 1700435 (2018) [Google Scholar]
  65. P.-K. Kung, M.-H. Li, P.-Y. Lin, Y.-H. Chiang, C.-R. Chan, T.-F. Guo et al., Adv. Mater. Interfaces 5, 1800882 (2018) [Google Scholar]
  66. R. Singh, P.K. Singh, B. Bhattacharya, H.-W. Rhee, Appl. Mater. Today 14, 175 (2019) [Google Scholar]
  67. Y. Xia, S. Dai, J. Mater. Sci. : Mater. Electron. 32, 12746 (2021) [Google Scholar]
  68. Y. He, G. Galli, Chem. Mater. 29, 682 (2017) [Google Scholar]
  69. J.N. Wilson, J.M. Frost, S.K. Wallace, A. Walsh, APL Mater. 7, 010901 (2019) [Google Scholar]
  70. M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara et al., Appl. Phys. Lett. 105, 153502 (2014) [Google Scholar]
  71. A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W.R. Salaneck, Adv. Mater. 10, 859 (1998) [Google Scholar]
  72. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel et al., Synth. Met. 111, 315 (2000) [Google Scholar]
  73. R. Schlaf, H. Murata, Z. Kafafi, J. Electron Spectros. Relat. Phenomena. 120, 149 (2001) [Google Scholar]
  74. A. Gankin, E. Mervinetsky, I. Alshanski, J. Buchwald, A. Dianat, R. Gutierrez et al., Langmuir 35, 2997 (2019) [Google Scholar]
  75. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey et al., Materials 3, 4892 (2010) [Google Scholar]
  76. X. Xie, G. Liu, C. Xu, S. Li, Z. Liu, E.-C. Lee, Org. Electr. 44, 120 (2017) [Google Scholar]
  77. G. Ligorio, N. Zorn Morales, E.J. List-Kratochvil, Appl. Phys. Lett. 116, 241603 (2020) [Google Scholar]
  78. D. Han, C. Wu, Y. Zhao, Y. Chen, L. Xiao, Z. Zhao, ACS Appl. Mater. Interfaces 9, 42029 (2017) [Google Scholar]
  79. M.G. Helander, M. Greiner, Z. Wang, W.M. Tang, Z. Lu, J. Vac. Sci. Technol. A 29, 011019 (2011) [Google Scholar]
  80. M.B. Johnston, L.M. Herz, Acc. Chem. Res. 49, 146 (2016) [Google Scholar]
  81. C. Motta, F. El-Mellouhi, S. Sanvito, Sci. Rep. 5, 1 (2015) [Google Scholar]
  82. F. Arca, M. Loch, P. Lugli, IEEE J. Photovolt. 4, 1560 (2014) [Google Scholar]
  83. H. Wang, X. Wang, P. Fan, X. Yang, J. Yu, Int. J. Photoenergy 2015 (2015) [Google Scholar]
  84. V.D. Mihailetchi, J.K. van Duren, P.W. Blom, J.C. Hummelen, R.A. Janssen, J.M. Kroon et al., Adv. Funct. Mater. 13, 43 (2003) [Google Scholar]
  85. S. Joshi, M. Mudigere, L. Krishnamurthy, G. Shekar, Chem. Pap. 68, 1584 (2014) [Google Scholar]
  86. P.-J. Liu, Z.-J. Yao, V.M.H. Ng, J.-T. Zhou, Z.-H. Yang, L.-B. Kong, Acta Metall. Sin. (Engl. Lett.) 31, 171 (2018) [Google Scholar]
  87. M. Tyagi, M. Tomar, V. Gupta, Anal. Chim. Acta 726, 93 (2012) [Google Scholar]
  88. A. Huang, J. Zhu, J. Zheng, Y. Yu, Y. Liu, S. Yang, S. Bao, L. Lei, P. Jin, J. Mater. Chem. C 4, 10839 (2016) [Google Scholar]
  89. S. Kang, Y. Yi, C. Kim, S. Cho, M. Noh, K. Jeong et al., Synth. Met. 156, 32 (2006) [Google Scholar]
  90. R. Motoyoshi, T. Oku, A. Suzuki, K. Kikuchi, S. Kikuchi, B. Jeyadevan, J. Cuya, Adv. Mater. Sci. Eng. 2010, 562842 (2010) [Google Scholar]
  91. J.J. Kwiatkowski, J.M. Frost, J. Nelson, Nano Lett. 9, 1085 (2009) [Google Scholar]
  92. A. Labrunie, J. Gorenflot, M. Babics, O. Aleveque, S. Dabos-Seignon, A.H. Balawi et al., Chem. Mater. 30, 3474 (2018) [Google Scholar]
  93. M. Ye, C. He, J. Iocozzia, X. Liu, X. Cui, X. Meng et al., J. Phys. D: Appl. Phys. 50, 373002 (2017) [Google Scholar]
  94. E.S. Muckley, C.B. Jacobs, K. Vidal, J.P. Mahalik, R. Kumar, B.G. Sumpter, I.N. Ivanov, ACS Appl. Mater. Interfaces 9, 15880 (2017) [Google Scholar]
  95. T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Adv. Energy Mater. 2020, 1904134 (2020) [Google Scholar]
  96. H. Yu, J. Ryu, J.W. Lee, J. Roh, K. Lee, J. Yun et al., ACS Appl. Mater. Interfaces 9, 8113 (2017) [Google Scholar]
  97. C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li et al., Nano Lett. 15, 2756 (2015) [Google Scholar]
  98. T.S. Sherkar, C. Momblona, L. Gil-Escrig, H.J. Bolink, L.J.A. Koster, Adv. Energy Mater. 7, 1602432 (2017) [Google Scholar]
  99. Z. Hu, Z. Lin, J. Su, J. Zhang, J. Chang, Y. Hao, Solar RRL 3, 1900304 (2019) [Google Scholar]
  100. C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Adv. Funct. Mater. 29, 1808801 (2019) [Google Scholar]
  101. A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, Adv. Energy Mater. 9, 1901489 (2019) [Google Scholar]
  102. G.-J.A. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, H.J. Bolink, Adv. Mater. 27, 1837 (2015) [Google Scholar]
  103. M.I.H. Ansari, A. Qurashi, M.K. Nazeeruddin, J. Photochem. Photobiol. C 35, 1 (2018) [Google Scholar]
  104. S. Shao, M.A. Loi, Adv. Mater. Interfaces 7, 1901469 (2020) [Google Scholar]
  105. J. Chen, N.-G. Park, Adv. Mater. 31, 1803019 (2019) [Google Scholar]
  106. T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H.J. Bolink et al., ACS Energy Lett. 2, 1214 (2017) [Google Scholar]
  107. V.M. Le Corre, M. Stolterfoht, L. Perdigón Toro, M. Feuerstein, C. Wolff, L. Gil-Escrig et al., ACS Appl. Energy Mater. 2, 6280 (2019) [Google Scholar]
  108. S.-J. Yoo, J.-J. Kim, Macromol. Rapid Commun. 36, 984 (2015) [Google Scholar]
  109. M. Fang, C. Zhang, Q. Chen, Appl. Surf. Sci. 385, 28 (2016) [Google Scholar]
  110. A. Alves, D. Gomes, J. Silva, G. Silva, Appl. Surf. Sci. 279, 67 (2013) [Google Scholar]
  111. S. Huang, Q. Dong, Y. Shi, L. Duan, L. Wang, Chem. Eng. J. 394, 125024 (2020) [Google Scholar]
  112. A.K. Mishra, R. Shukla, SN Appl. Sci. 2, 321 (2020) [Google Scholar]
  113. H. Dong, J. Xi, L. Zuo, J. Li, Y. Yang, D. Wang et al., Adv. Funct. Mater. 29, 1808119 (2019) [Google Scholar]
  114. Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang et al., Adv. Mater. 31, 1804284 (2019) [Google Scholar]
  115. T. Chen, G. Tong, E. Xu, H. Li, P. Li, Z. Zhu et al., J. Mater. Chem. A 7, 20597 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.