Open Access
Issue
EPJ Photovolt.
Volume 12, 2021
Article Number 3
Number of page(s) 12
Section Modelling
DOI https://doi.org/10.1051/epjpv/2021003
Published online 18 June 2021
  1. A. Pérez-Tomás, A. Mingorance, D. Tanenbaum, M. Lira-Cantú, Metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells, in The Future of Semiconductor Oxides in Next-Generation Solar Cells (Elsevier, 2018) [Google Scholar]
  2. S. Rühle, A.Y. Anderson, H.N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, A. Zaban, All-Oxide Photovoltaics, J. Phys. Chem. Lett. 3, 3755 (2012) [CrossRef] [Google Scholar]
  3. T. Dimopoulos, All-oxide solar cells, in The Future of Semiconductor Oxides in Next-Generation Solar Cells (Elsevier, 2018) [Google Scholar]
  4. C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D'Incau, P. Scardi, A. Mittiga, Absorption coecient of bulk and thin lm Cu2O, Solar Energy Mater. Solar Cells 95, 2848 (2011) [CrossRef] [Google Scholar]
  5. T. Minami, Y. Nishi, T. Miyata, Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications, Appl. Phys. Lett. 105, 212104 (2014) [CrossRef] [Google Scholar]
  6. S. Rühle, Tabulated values of the Shockley Queisser limit for single junction solar cells, Solar Energy 130, 139 (2016) [Google Scholar]
  7. C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment, Environ. Sci. Technol. 43, 2072 (2009) [CrossRef] [PubMed] [Google Scholar]
  8. C.F. Klingshirn, Zinc Oxide: from fundamental properties towards novel applications. Number 120 in Springer series in materials science, edited by C.F. Klingshirn (Springer, Heidelberg; London, 2010) [CrossRef] [Google Scholar]
  9. P. Sawicka-Chudy, M. Sibiński, E. Rybak-Wilusz, M. Cholewa, G. Wisz, R. Yavorskyi, Review of the development of copper oxides with titanium dioxide thin-film solar cells, AIP Adv. 10, 010701 (2020) [CrossRef] [Google Scholar]
  10. Y. Takiguchi, S. Miyajima, Device simulation of cuprous oxide heterojunction solar cells, Jpn. J. Appl. Phys. 54, 112303 (2015) [CrossRef] [Google Scholar]
  11. T. Minami, Y. Nishi, T. Miyata, Eciency enhancement using a Zn1-xGexO thin lm as an n-type window layer in Cu2O-based heterojunction solar cells, Appl. Phys. Express 9, 052301 (2016) [CrossRef] [Google Scholar]
  12. N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, L.V.T. Hung, The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method, J. Photochem. Photobiol. A: Chem. 349, 100 (2017) [CrossRef] [Google Scholar]
  13. D. Kudryashov, A. Gudovskikh, A. Monastyrenko, All-oxide heterojunction solar cells formed by magnetron sputtering, J. Phys.: Conf. Ser. 1124, 041017 (2018) [CrossRef] [Google Scholar]
  14. C. de Melo, M. Jullien, Y. Battie, A. En Naciri, J. Ghanbaja, F. Montaigne, J.F. Pierson, F. Rigoni, N. Almqvist, A. Vomiero et al., Semi-Transparent p-Cu2O/n-ZnO Nanoscale-Film Heterojunctions for Photodetection and Photovoltaic Applications, ACS Appl. Nano Mater. 2, 4358 (2019) [CrossRef] [Google Scholar]
  15. J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, T. Dimopoulos, All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode, Solar Energy Mater. Solar Cells 161, 449 (2017) [CrossRef] [Google Scholar]
  16. M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, J. Heo, Cu2O/ZnO heterojunction thin-film solar cells: the effect of electrodeposition condition and thickness of Cu2O, Thin Solid Films 661, 132 (2018) [CrossRef] [Google Scholar]
  17. T. Kosugi, S. Kaneko, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films, J. Am. Ceram. Soc. 81, 3117 (1998) [CrossRef] [Google Scholar]
  18. M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban et al., TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis, Solar Energy Mater. Solar Cells 132, 549 (2015) [CrossRef] [Google Scholar]
  19. R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin lms, Surface Interface Anal. 50, 346 (2018) [CrossRef] [Google Scholar]
  20. N. Plankensteiner, W. Kautek, T. Dimopoulos, Aqueous Spray Pyrolysis of Cu2O Films: Inuence of Reducing Agent and Acetic Acid Addition, Chem Nano Mat 6, 663 (2020) [Google Scholar]
  21. T. Minami, T. Miyata, Y. Nishi, Relationship between the electrical properties of the noxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells, Solar Energy Mater. Solar Cells 147, 85 (2016) [CrossRef] [Google Scholar]
  22. B.K. Meyer, ZnO: dielectric constants, in New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, edited by W. Martienssen and U. Rössler (Springer, Berlin, Heidelberg, 2011), Vol. 44D, pp. 593–593. Landolt-Börnstein - Group III Condensed Matter [Google Scholar]
  23. C. Noguet, Proprietes dielectriques de l'oxyde cuivreux aux audiofrequences entre 150 K et 320 K, J. Phys. 31, 393 (1970) [CrossRef] [Google Scholar]
  24. C. Bundesmann, R. Schmidt-Grund, M. Schubert, Optical properties of ZnO and related compound, in Transparent Conductive Zinc Oxide, edited by R. Hull, R.M. Osgood, J. Parisi, H. Warlimont, K. Ellmer, A. Klein, B. Rech (Springer, Berlin, Heidelberg, 2008), Vol. 104, pp. 79–124 [CrossRef] [Google Scholar]
  25. T. Minami, T. Miyata, J.I. Nomoto, Impurity-doped ZnO Thin Films Prepared by Physical Deposition Methods Appropriate for Transparent Electrode Applications in Thin-lm Solar Cells, IOP Conf. Ser.: Mater. Sci. Eng. 34, 012001 (2012) [CrossRef] [Google Scholar]
  26. B. Claflin, D. Look, S. Park, G. Cantwell, Persistent n-type photoconductivity in p-type ZnO, J. Crys. Growth 287, 16 (2006) [CrossRef] [Google Scholar]
  27. W.M. Kim, I.H. Kim, J.H. Ko, B. Cheong, T.S. Lee, K.S. Lee, D. Kim, T.Y. Seong, Density-of-state effective mass and non-parabolicity parameter of impurity doped ZnO thin films, J. Phys. D: Appl. Phys. 41, 195409 (2008) [CrossRef] [Google Scholar]
  28. J.W. Hodby, T.E. Jenkins, C. Schwab, H. Tamura, D. Trivich, Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O, J. Phys. C: Solid State Phys. 9, 1429 (1976) [CrossRef] [Google Scholar]
  29. S. Lettieri, L. Santamaria Amato, P. Maddalena, E. Comini, C. Baratto, S. Todros, Recombination dynamics of deep defect states in zinc oxide nanowires, Nanotechnology 20, 175706 (2009) [CrossRef] [Google Scholar]
  30. E. Fortin, P. Rochon, J. Zielinger, Photoconductivity and photovoltaic excitation spectra and their wavelength derivative in Cu2O, J. Phys. Chem. Solids 36, 1299 (1975) [CrossRef] [Google Scholar]
  31. A. Walsh, K.T. Butler, Prediction of Electron Energies in Metal Oxides, Accounts Chem. Res. 47, 364 (2014) [CrossRef] [Google Scholar]
  32. J. Deuermeier, J. Gassmann, J. Brötz, A. Klein, Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide, J. Appl. Phys. 109, 113704 (2011) [CrossRef] [Google Scholar]
  33. V. Stevanović, S. Lany, D.S. Ginley, W. Tumas, A. Zunger, Assessing capability of semiconductors to split water using ionization potentials and electron anities only, Phys. Chem. Chem. Phys. 16, 3706 (2014) [CrossRef] [Google Scholar]
  34. M.T. Rizi, M.H. Shahrokh Abadi, Numerical investigation on eciency improvement of double layer antireection coating AZO/buffer/Cu2O/CuO on back-surface uorine-doped tin oxide heterostructure solar cells, J. Opt. Soc. Am. B 36, 1155 (2019) [CrossRef] [Google Scholar]
  35. L. Zhu, G. Shao, J.K. Luo, Numerical study of metal oxide heterojunction solar cells, Semiconductor Sci. Technol. 26, 085026 (2011) [CrossRef] [Google Scholar]
  36. A. Goltzené, C. Schwab, Impurity scattering effect on the cyclotron resonance of carriers in Cu2O, Phys. Stat. Solidi 92, 483 (1979) [CrossRef] [Google Scholar]
  37. M.A. Lloyd, S. Siah, R.E. Brandt, J. Serdy, S.W. Johnston, Y.S. Lee, T. Buonassisi. Intrinsic defect engineering of cuprous oxide to enhance electrical transport properties for photovoltaic applications, in 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014, Vol. 2, pp. 1–3 [Google Scholar]
  38. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, Y. Igasaki, Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry, Appl. Surface Sci. 175–176, 543 (2001) [CrossRef] [Google Scholar]
  39. H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. Ben Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris et al., Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells: Optimization of Cu2ZnSnSe4 thin film solar cells, Phys. Stat. Solidi 212, 1984 (2015) [Google Scholar]
  40. M. Kubota, T. Onuma, A. Tsukazaki, A. Ohtomo, M. Kawasaki, T. Sota, S.F. Chichibu, Recombination dynamics of excitons in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy, Appl. Phys. Lett. 90, 141903 (2007) [CrossRef] [Google Scholar]
  41. P.R. Chalker, P.A. Marshall, P.J. King, K. Dawson, S. Romani, P.A. Williams, J. Ridealgh, M.J. Rosseinsky, Atomic layer deposition of germanium-doped zinc oxide films with tuneable ultraviolet emission, J. Mater. Chem. 22, 12824 (2012) [CrossRef] [Google Scholar]
  42. R. Mohammadigharehbagh, S. Özen, H.H. Yudar, S. Pat, Ş. Korkmaz, Investigation of the some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique, J. Mater. Sci.: Mater. Electr. 28, 14131 (2017) [CrossRef] [Google Scholar]
  43. R. Wang, L.L.H. King, A.W. Sleight, Highly conducting transparent thin lms based on zinc oxide, J. Mater. Res. 11, 1659 (1996) [CrossRef] [Google Scholar]
  44. W. Zhu, T. Kammuri, S. Kitamura, M. Sturaro, A. Martucci, G. Pezzotti, Structure and composition evaluation of heavily Ge-doped ZnO nanocrystal lms, J. Phys. D: Appl. Phys. 51, 085302 (2018) [CrossRef] [Google Scholar]
  45. T.N. Nunley, N.S. Fernando, N. Samarasingha, J.M. Moya, C.M. Nelson, A.A. Medina, S. Zollner, Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6eV via a multisample ellipsometry investigation, J. Vacuum Sci. Technol. B 34, 061205 (2016) [CrossRef] [Google Scholar]
  46. L.S. Wang, H. Wu, S.R. Desai, J. Fan, S.D. Colson, A Photoelectron Spectroscopic Study of Small Silicon Oxide Clusters: SiO2, Si2O3, and Si2O4, J. Phys. Chem. 100, 8697 (1996) [CrossRef] [Google Scholar]
  47. S. Murad, P. Baine, D. McNeill, S. Mitchell, B. Armstrong, M. Modreanu, G. Hughes, R. Chellappan, Optimisation and scaling of interfacial GeO2 layers for high- gate stacks on germanium and extraction of dielectric constant of GeO2, Solid-State Electr. 78, 136 (2012) [CrossRef] [Google Scholar]
  48. A. Polity, B.K. Meyer, T. Krämer, C. Wang, U. Haboeck, A. Hoffmann, ZnO based ternary transparent conductors, Phys. Stat. Solidi 203, 2867 (2006) [CrossRef] [Google Scholar]
  49. J. Wang, C. Yan, S. Magdassi, P.S. Lee, Zn2GeO4 Nanowires As Ecient Electron Injection Material for Electroluminescent Devices, ACS Appl. Mater. Interfaces 5, 6793 (2013) [CrossRef] [Google Scholar]
  50. X. Zhou, Q. Zhang, L. Gan, X. Li, H. Li, Y. Zhang, D. Golberg, T. Zhai, High-Performance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4 Nanowire, Adv. Funct. Mater. 26, 704 (2016) [CrossRef] [Google Scholar]
  51. S. Wu, Q. Ma, Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics, J. Alloys Comp. 567, 40 (2013) [CrossRef] [Google Scholar]
  52. T. Minemoto, J. Julayhi, Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode, Curr. Appl. Phys. 13, 103 (2013) [CrossRef] [Google Scholar]
  53. R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Effect of spray pressure on optical, electrical and solar cell eciency of novel Cu2O thin lms, Surface Coat. Technol. 347, 164 (2018) [CrossRef] [Google Scholar]
  54. K. Ravichandran, N. Jabena Begum, S. Snega, B. Sakthivel, Properties of Sprayed Aluminum-Doped Zinc Oxide Films–A Review, Mater. Manufactur. Processes 31, 1411 (2016) [CrossRef] [Google Scholar]
  55. S. Santhosh Kumar Jacob, I. Kulandaisamy, S. Valanarasu, A.M.S. Arulanantham, M. Shkir, A. Kathalingam, N. Soundaram, Improving the conductivity of cuprous oxide thin film by doping Calcium via feasible nebulizer spray technique for solar cell (FTO/ZnO/Ca-Cu2O), Mater. Res. Express 6, 046405 (2019) [CrossRef] [Google Scholar]
  56. W. Lan, C. Tsai, S. Lee, W. Chao, M. Shih, Y. Chou, Y. Wu, Y. Hsu, Electrical properties of cuprous oxide thin films fabricated by ultrasonic spray pyrolysis, in 2012 17th Opto-Electronics and Communications Conference, 2012, pp. 669–670 [Google Scholar]
  57. K. Kardarian, D. Nunes, P. Maria Sberna, A. Ginsburg, D.A. Keller, J. Vaz Pinto, J. Deuermeier, A.Y. Anderson, A. Zaban, R. Martins et al., Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cells, Solar Energy Mater. Solar Cells 147, 27 (2016) [CrossRef] [Google Scholar]
  58. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Thin film deposition of Cu2O and application for solar cells, Solar Energy 80, 715 (2006) [CrossRef] [Google Scholar]
  59. B. He, J. Xu, H. Xing, C. Wang, X. Zhang, The effect of substrate temperature on high quality c-axis oriented AZO thin lms prepared by DC reactive magnetron sputtering for photoelectric device applications, Superlatt. Microstruct. 64, 319 (2013) [CrossRef] [Google Scholar]
  60. C. Chevallier, S. Bose, S.O.S. Hamady, N. Fressengeas, Numerical simulations of AZO/ZnGeO/Cu2O solar cells: Impact of the germanium composition of the buffer layer and the use of low cost fabrication on the photovoltaic performances, January 2021 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.