Issue |
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/epjpv/2024019 | |
Published online | 11 June 2024 |
https://doi.org/10.1051/epjpv/2024019
Original Article
Challenges and advantages of cut solar cells for shingling and half-cell modules
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr 2, 79110 Freiburg, Germany
*e-mail: jonas.huyeng@ise.fraunhofer.de
Received:
29
September
2023
Accepted:
3
May
2024
Published online: 11 June 2024
Cutting silicon solar cells from their host wafer into smaller cells reduces the output current per cut cell and therefore allows for reduced ohmic losses in series interconnection at module level. This comes with a trade-off of unpassivated cutting edges, which result in power losses. This performance drop can be seen in fill factor FF and open-circuit voltage VOC losses on cut cell level. Based on experimental realization of different solar cell layouts on the same industrial blue wafers (solar cell precursors), a combined simulation method to predict the performance on module level is demonstrated. This method uses Gridmaster+ for cell simulation and SmartCalc. Module for module simulation. The accuracy of the simulations is demonstrated by comparing with experimental results both from host and cut cell level. In addition, significant influence of the current–voltage (I–V) measurement configuration is demonstrated, mainly affecting FF. Using flexible methods like GridTOUCH® for I–V testing gives fast results but can also lead to overestimation of the host cell performance, resulting in overestimated cell-to-module losses or unreasonable comparisons between hosts and cut cells. It is also demonstrated that application of the passivated edge technology (PET) yields I–V characteristics close to those of cells with ideal edges, i.e., without edge recombination. The implications on the module efficiency are also compared between modules built using cells with and without edge passivation, giving the highest efficiency for a shingled module with PET.
Key words: Solar cell simulation / module simulation / shingling / half-cell modules / edge passivation / Passivated Edge Technology (PET)
© J.D. Huyeng et al., Published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.