Issue |
EPJ Photovolt.
Volume 13, 2022
EU PVSEC 2021: State of the Art and Developments in Photovoltaics
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjpv/2022008 | |
Published online | 25 May 2022 |
https://doi.org/10.1051/epjpv/2022008
Regular Article
A study of quenching approaches to optimize ultrasonic spray coated perovskite layers scalable for PV
1
Imec − Partner in Solliance, Kapeldreef 75, 3000 Leuven, Belgium
2
Hasselt University, Institute for Materials Research, Wetenschapspark 1, 3590 Diepenbeek, Belgium
3
EnergyVille, Thor Park 8320, 3600 Genk, Belgium
* e-mail: joao.silvano@uhasselt.be
Received:
30
June
2021
Received in final form:
14
March
2022
Accepted:
18
March
2022
Published online: 25 May 2022
Perovskite materials have gathered increased interest over the last decade. Their rapidly rising efficiency, coupled with the compatibility with solution processing and thin film technology has put perovskite solar cells (PSC) on the spotlight of photovoltaic research. On top of that, band gap tunability via composition changes makes them a perfect candidate for tandem applications, allowing for further harvest of the solar irradiation spectrum and improved power conversion efficiency (PCE). In order to convert all these advantages into large scale production and have increased dissemination in the energy generation market, perovskite fabrication must be adapted and optimized with the use of high throughput, continuous processes, such as ultrasonic spray coating (USSC). In this paper we investigate the ultrasonically spray coated perovskite layers for photovoltaic applications, with particular focus on the quenching-assisted crystallization step. Different quenching techniques are introduced to the process and compared in terms of final layer morphology and cell performance. Finally, gas quenching is used with the large-scale-compatible deposition and allows the production of perovskite solar cells with PCE >15%.
Key words: Quenching / perovskite / photovoltaic / scalable / spray-coating
© J. Silvano et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.