Open Access
Issue
EPJ Photovolt.
Volume 16, 2025
Article Number 21
Number of page(s) 18
DOI https://doi.org/10.1051/epjpv/2025009
Published online 03 April 2025
  1. W. Shockley, H.J. Quiesser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32, 510 (1961) [CrossRef] [Google Scholar]
  2. L.C. Andreani, A. Bozzola, P. Kowalczewsk et al., Silicon solar cells: toward the efficiency limits, Adv. Phys. X 4, 1548305 (2019) [Google Scholar]
  3. R. Armin, H. Martin, W.G. Stefan et al., Reassessment of the limiting efficiency for crystalline silicon solar cells, IEEE J. Photovolt. 3, 1184 (2013) [CrossRef] [Google Scholar]
  4. LONGi Sets a New World Record of 27.09% for the Efficiency of Silicon Heterojunction Back-Contact (HBC) Solar Cells (2023). https://www.longi.com/en/news/heterojunction-back-contact-battery/ [Google Scholar]
  5. K.A. Bush, A.F. Palmstrom, J.Y. Zhengshan et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy 2, 1 (2017) [CrossRef] [Google Scholar]
  6. N.N. Lal, Y. Dkhissi, W. Li et al., Perovskite tandem solar cells, Adv. Energy Mater. 7, 1602761 (2017) [Google Scholar]
  7. F. Sahli, J. Werner, B.A. Kamino et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Mater. 17, 820 (2018) [Google Scholar]
  8. Oxford PV perovskite solar cell achieves 28% efficiency, Press Release by Oxford PV (2018). https://www.pv-magazine.com/2018/12/20/tandems-at-28/ [Google Scholar]
  9. G. Nogay, F. Sahli, J. Werner et al., 25.1\%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts, ACS Energy Lett. 4, 844 (2019) [Google Scholar]
  10. J. Zheng, H. Mehrvarz, C. Liao et al., Large-area 23\%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material, ACS Energy Lett. 4, 2623 (2019) [Google Scholar]
  11. E. Kohnen, M. Jost, A.B. Morales-Vilches et al., Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance, Sustain. Energy Fuels 3, 1995 (2019) [Google Scholar]
  12. R. Schmager, M. Langenhorst, J. Lehr et al., Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics, Opt. Express 27, A507 (2019) [Google Scholar]
  13. Y. Liu, Y. Li, Y. Wu et al., High-efficiency silicon heterojunction solar cells: materials, devices and applications, Mater. Sci. Eng. R: Rep. 142, 100579 (2020) [Google Scholar]
  14. S. Gharibzadeh, I.M. Hossain, P. Fassl et al., 2D/3D Heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS, Adv. Funct. Mater. 30, 1909919 (2020) [Google Scholar]
  15. F. Gota, M. Langenhorst, R. Schmager et al., Energy yield advantages of three-terminal perovskite-silicon tandem photovoltaics, Joule 4, 2387 (2020) [CrossRef] [Google Scholar]
  16. Oxford PV hits new world record for solar cell, Press Releases by Oxford PV (2020). https://www.oxfordpv.com/news/oxford-pv-hits-new-world-record-solar-cell [Google Scholar]
  17. A. Al-Ashouri, E. Kohnen, B. Li et al., Monolithic perovskite/silicon tandem solar cell with > 29\% efficiency by enhanced hole extraction, Science 370, 1300 (2020) [CrossRef] [PubMed] [Google Scholar]
  18. A. Rohatgi, K. Zhu, J. Tong et al., 26.7% efficient 4-terminal perovskite-silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiOx passivating contact silicon cell, IEEE J. Photovolt. 10, 417 (2020) [Google Scholar]
  19. H.H. Park, J. Kim, G. Kim et al., Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applications, Small Methods 4, 2000074 (2020) [Google Scholar]
  20. A.S. Subbiah, F.H. Isikgor, C.T. Howells et al., High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating, ACS Energy Lett. 5, 3034 (2020) [Google Scholar]
  21. J. Xu, C.C. Boyd, J.Y. Zhengshan et al., Triple-halide wide--band gap perovskites with suppressed phase segregation for efficient tandems, Science 367, 1097 (2020) [Google Scholar]
  22. B. Chen, S.W. Baek, Y. Hou et al., Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems, Nat. Commun. 11, 1257 (2020) [Google Scholar]
  23. Z. Wang, X. Zhu, S. Zuo et al., 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh, Adv. Funct. Mater. 30, 1908298 (2020) [CrossRef] [Google Scholar]
  24. P.S.C. Schulze, A.J. Bett, M. Bivour et al., 25.1\% high-efficient monolithic perovskite silicon tandem solar cell with a high band gap perovskite absorber, Sol. RRL 4, 2000152 (2020) [Google Scholar]
  25. World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 per cent, Press release by HZB (2020). https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21020;sprache=en [Google Scholar]
  26. World record again at HZB: Almost 30% efficiency for next-generation tandem solar cells, Press Releases by HZB (2021). https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23248;sprache=en;seitenid=1 [Google Scholar]
  27. J. Liu, E. Aydin, J. Yin et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell, Joule 5, 3169 (2021) [Google Scholar]
  28. 2 New world records: perovskite-on-silicon-tandem solar cells, Press Releases by CSEM, EPFL (2022). https://csem.cdn.prismic.io/csem/f46abbd1-6fe4-4554-9e0e-053152b390aa_CP2022-EPFL-worldrecord-EN.pdf [Google Scholar]
  29. Y. Wu, P. Zheng, J. Peng et al., 27.6% perovskite/c-Si tandem solar cells using industrial fabricated TOPCon device, Adv. Energy Mater. 12, 2200821 (2022) [CrossRef] [Google Scholar]
  30. S. Mariotti, K. Jager, M. Diederich et al., Monolithic perovskite/silicon tandem solar cells fabricated using industrial p-type polycrystalline silicon on oxide/passivated emitter and rear cell silicon bottom cell technology, Solar RRL 6, 2101066 (2022) [Google Scholar]
  31. Z. Ying, Z. Yang, J. Zheng et al., Monolthic perovskite/black-silicon tandems based on tunnel oxide passivated contacts, Joule 6, 2644 (2022) [Google Scholar]
  32. Y. Yao, P. Hang, B. Li et al., Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency, Small 18, 2203319 (2022) [Google Scholar]
  33. World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency, Press Release by HZB (2022). https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24348;sprache=en [Google Scholar]
  34. KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell, PV magazine (2023). https://www.pv-magazine.com/2023/05/30/kaust-claims-33-7-efficiency-for-perovskite-silicon-tandem-solar-cell/ [Google Scholar]
  35. LONGi sets a new world record of 33.9% for the efficiency of crystalline silicon-perovskite tandem solar cells (2023). https://www.longi.com/en/news/new-world-record-for-the-efficiency-of-crystalline-silicon-perovskite-tandem-solar-cells/ [Google Scholar]
  36. A.J. Riquelme, K. Valadez-Villalobos, P.P. Boix et al., Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation, Phys. Chem. Chem. Phys. 24, 15657 (2022) [Google Scholar]
  37. T. Moot, J.B. Patel, G. McAndrews et al., Temperature coefficients of perovskite photovoltaics for energy yield calculations, ACS Energy Lett. 6, 2038 (2021) [Google Scholar]
  38. F. Azri, A. Meftah, N. Sengouga et al., Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell, Sol. Energy 181, 372 (2019) [Google Scholar]
  39. L. Lin, L. Jiang, P. Li et al., Simulated development and optimized performance of CsPbI3-based all-inorganic perovskite solar cells, Sol. Energy 198, 454 (2020) [Google Scholar]
  40. V. Sebastian, J. Kurian et al., Simulation and optimization studies on CsPbI3-based inorganic perovskite solar cells, Sol. Energy 221, 99 (2021) [Google Scholar]
  41. H. Abedini-Ahangarkola, S. Soleimani-Amiri, S.G. Rudi, Modeling and numerical simulation of high-efficiency perovskite solar cell with three active layers, Sol. Energy 236, 724 (2022) [Google Scholar]
  42. N.K. Sinha, D.S. Ghosh, A. Khare et al., A comprehensive guide to bifacial perovskite solar cells: simulation and optimization, Adv. Theory Simul. 7, 2300633 (2024) [Google Scholar]
  43. R. Ghosh, A. Singh, P. Agarwal et al., Study on effect of different HTL and ETL materials on the perovskite solar cell performance with TCAD simulator, Mater. Today: Proc. (2023) [Google Scholar]
  44. J.Y. Kim, J.-W. Lee, H.S. Jung et al., High-efficiency perovskite solar cells, Chem. Rev. 120, 7867 (2020) [CrossRef] [PubMed] [Google Scholar]
  45. F.H. Isikgor, S. Zhumagali, L.V.T. Merino et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells, Nat. Rev. Mater. 8, 89 (2023) [Google Scholar]
  46. Z. Zhang, L. Qiao, K. Meng et al., Rationalization of passivation strategies toward high-performance perovskite solar cells, Chem. Soc. Rev. 52, 163 (2023) [Google Scholar]
  47. F. Qin, J. Chen, J. Liu et al., Design of high-efficiency perovskite solar cells based on inorganic and organic undoped double hole layer, Sol. Energy 262, 111796 (2023) [Google Scholar]
  48. A.D. Taylor, Q. Sun, K.P. Goetz et al., A general approach to high-efficiency perovskite solar cells by any antisolvent, Nat. Commun. 12, 1878 (2021) [Google Scholar]
  49. G. Li, Z. Su, L. Canil et al., Highly efficient pin perovskite solar cells that endure temperature variations, Science 379, 399 (2023) [Google Scholar]
  50. D.-K. Lee, N.-G. Park et al., Materials and methods for high-efficiency perovskite solar modules, Solar RRL 6, 2100455 (2022) [Google Scholar]
  51. S. Liu, V.P. Biju, Y. Qi et al., Recent progress in the development of high-efficiency inverted perovskite solar cells, NPG Asia Mater. 15, 27 (2023) [Google Scholar]
  52. Y. Yu, F. Zhang, T. Hou et al., A review on gas-quenching technique for efficient perovskite solar cells, Solar RRL 5, 2100386 (2021) [Google Scholar]
  53. M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions, Energy Environ. Sci. 10, 1983 (2017) [CrossRef] [Google Scholar]
  54. M. Lehr, M. Langenhorst, R. Schmager et al., Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces, Sustain. Energy Fuels 2, 2754 (2018) [Google Scholar]
  55. M. Jošt, E. Köhnen, A.B. Morales-Vilches et al., Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield, Energy Environ. Sci. 11, 3511 (2018) [CrossRef] [Google Scholar]
  56. G. Coletti, S.L. Luxembourg, L.J. Geerligs et al., Bifacial four-terminal perovskite/silicon tandem solar cells and modules, ACS Energy Lett. 5, 1676 (2020) [CrossRef] [Google Scholar]
  57. S. Orooji, U.W. Paetzold, Energy yield modeling of Perovskite-Silicon tandem photovoltaics: degradation and total lifetime energy yield, Energy Technol. 12, 2400998 (2024) [Google Scholar]
  58. M. De Bastiani, A.J. Mirabelli, Y. Hou et al., Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering, Nat. Energy 6, 167 (2021) [Google Scholar]
  59. F. Gota, M. Langenhorst, R. Schmager et al., Energy yield advantages of three-terminal perovskite-silicon tandem photovoltaics, Joule 4, 2387 (2020) [CrossRef] [Google Scholar]
  60. B. Lipovšek, M. Jošt, Š. Tomšic et al., Energy yield of perovskite solar cells: influence of location, orientation, and external light management, Sol. Energy Mater. Sol. Cells 234, 111421 (2022) [Google Scholar]
  61. P. Lopez-Varo, M. Amara, S. Cacovich et al., Dynamic temperature effects in perovskite solar cells and energy yield, Sustain. Energy Fuels 5, 5523 (2021) [Google Scholar]
  62. M. Remec, Š. Tomšic, M. Khenkin et al., From sunrise to sunset: unraveling metastability in perovskite solar cells by coupled outdoor testing and energy yield modelling, Adv. Energy Mater. 2024, 2304452 (2024) [Google Scholar]
  63. Š. Tomšic, M. Jošt, K. Brecl et al., Energy yield modeling for optimization and analysis of perovskite-silicon tandem solar cells under realistic outdoor conditions, Adv. Theory Simul. 6, 2200931 (2023) [Google Scholar]
  64. M. Jošt, B. Lipovšek, B. Glažar et al., Perovskite solar cells go outdoors: field testing and temperature effects on energy yield, Adv. Energy Mater. 10, 2000454 (2020) [Google Scholar]
  65. R.H. Ahangharnejhad, W. Becker, J. Jones et al., Environmental impact per energy yield for bifacial perovskite solar cells outperforms crystalline silicon solar cells, Cell Rep. Phys. Sci. 1, 100216 (2020) [Google Scholar]
  66. 34.6%! Record-breaker LONGi Once Again Sets a New World Efficiency for Silicon-perovskite Tandem Solar Cells (2024). https://www.longi.com/en/news/2024-snec-silicon-perovskite-tandem-solar-cells-new-world-efficiency/ [Google Scholar]
  67. Y. Ko, H.J. Park, C. Lee et al., Recent progress in interconnection layers for hybrid photovoltaic tandems, Adv. Mat. 32, 2002196 (2020) [Google Scholar]
  68. H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment, Chem. Rev. 120, 9835 (2020) [Google Scholar]
  69. M. Jost, L. Kegelmann, L. Korte et al., Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency, Adv. Mat. 10, 1904102 (2020) [Google Scholar]
  70. A.H.M. Smets et al., Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems (UIT Cambridge, 2016), Chapter 5 [Google Scholar]
  71. M. Vogt, C.R. Tobon, A. Alcaniz et al., Introducing a comprehensive physics-based modelling framework for tandem and other PV systems, Sol. Energy Mater. Sol. Cells 247, 111944 (2022) [Google Scholar]
  72. Š. Tomšic, M. Jošt, K. Brecl, M. Topic, B. Lipovšek, Energy yield modeling for optimization and analysis of perovskite-silicon tandem solar cells under realistic outdoor conditions, Adv. Theory Simul. 6, 2200931 (2023) [Google Scholar]
  73. Y. Blom, M.R. Vogt, C.M.R. Tobon, R. Santbergen, M. Zeman, O. Isabella, Energy loss analysis of two-terminal tandem PV systems under realistic operating conditions-revealing the importance of fill factor gains, Sol. RRL 7, 2200579 (2023) [Google Scholar]
  74. S. Orooji, U.W. Paetzold, Energy yield modeling of perovskite--silicon tandem photovoltaics: degradation and total lifetime energy yield, Energy Technol. 12, 2400998 (2024) [Google Scholar]
  75. M. Taguchi, A. Terakawa, E. Maruyama, M. Tanaka, Obtaining a higher Voc in HIT cell, Prog. Photovolt. Res. Appl. 13, 481 (2005) [Google Scholar]
  76. M. Taguchi, A. Yano, S. Tohoda et al., 24.7% record efficiency HIT solar cell on thin silicon wafer, IEEE J. Photovolt. 4, 96 (2013) [Google Scholar]
  77. K. Masuko, M. Shigematsu, T. Hashiguchi et al., Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovolt. 4, 1433 (2014) [Google Scholar]
  78. F. Feldmann, M. Bivour, C. Reichel et al., Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics, Sol. Energy Mater. Sol. Cells 120, 270 (2014) [Google Scholar]
  79. VDMA, V.D.M.u.A, International Technology Roadmap for Photovoltaic, fourteenth ed. (2023) [Google Scholar]
  80. A. Richter, J. Benick, F. Feldmann et al., n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation, Sol. Energy Mater. Sol. Cells 173, 96 (2017) [Google Scholar]
  81. G. Yang, A. Ingenito, O. Isabella et al., IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts, Sol. Energy Mater. Sol. Cells 158, 84 (2016) [Google Scholar]
  82. F. Haase, C. Hollemann, S. Schafer et al., Laser contact openings for local poly-Si-metal contacts enabling 26.1\%-efficient POLO-IBC solar cells, Sol. Energy Mater. Sol. Cells 186, 184 (2018) [CrossRef] [Google Scholar]
  83. F. Feldmann, C. Reichel, R. Muller et al., The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells, Sol. Energy Mater. Sol. Cells 159, 265 (2017) [Google Scholar]
  84. B. Nemeth et al., Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells, J. Mater. Res. 31, 671 (2016) [CrossRef] [Google Scholar]
  85. D. Yan et al., Phosphorus-diffused polysilicon contacts for solar cells, Sol. Energy Mater. Sol. Cell. 142, 75 (2015) [Google Scholar]
  86. R. Peibst et al., Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story, Sol. Energy Mater. Sol. Cell. 158, 60 (2016) [Google Scholar]
  87. A. Richter, R. Muller, J. Benick et al., Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses, Nat. Energy 6, 429 (2021) [CrossRef] [Google Scholar]
  88. JinkoSolar's High-efficiency N-Type Monocrystalline Silicon Solar Cell Sets Our New Record with Maximum Conversion Efficiency of 26.4%, Press Release by Jinko Solar (2022). https://www.jinkosolar.com/en/site/newsdetail/1827 [Google Scholar]
  89. S. Deng, Y. Cai, U. Roemer, F.-J. Ma, F. Rougieux, J. Huang, Y. Cheng, M.A. Green, N. Song, Mitigating parasitic absorption in Poly-Si contacts for TOPCon solar cells: A comprehensive review, Sol. Energy Mater. Sol. Cells 267, 112704 (2024) [Google Scholar]
  90. J. Stückelberger, G. Nogay, P. Wyss et al., Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells, Sol. Energy Mater. Sol. Cells 158, 2 (2016) [Google Scholar]
  91. G. Yang, P. Guo, P. Procel et al., Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cells, Appl. Phys. Lett. 112, 193904 (2018) [Google Scholar]
  92. J. Stückelberger, G. Nogay, P. Wyss et al., Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells, Sol. Energy Mater. Sol. Cells 158, 2 (2016) [Google Scholar]
  93. G. Yang, P. Guo, P. Procel et al., Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cells, Appl. Phys. Lett. 112, 193904 (2018) [Google Scholar]
  94. M. Singh, R. Santbergen, L. Mazzarella et al., Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts, Sol. Energy Mater. Sol. Cells 210, 110507 (2020) [Google Scholar]
  95. M. Singh, R. Santbergen, I. Syifai et al., Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions, Nanophotonics 10, 2043 (2021) [Google Scholar]
  96. M. Singh, K. Datta, A. Amarnath et al., Crystalline silicon solar cells with thin poly-SiOx carrier-selective passivating contacts for perovskite/c-Si tandem applications, Prog. Photovolt. Res. Appl. 31, 877 (2023) [Google Scholar]
  97. A. Ingenito, G. Nogay, J. Stuckelberger et al., Phosphorous-doped silicon carbide as front-side full-area passivating contact for double-side contacted c-Si solar cells, IEEE J. Photovolt. 9, 346 (2018) [Google Scholar]
  98. G. Nogay, A. Ingenito, E. Rucavado et al., Crystalline silicon solar cells with coannealed electron- and hole-selective SiCx passivating contacts, IEEE J. Photovolt. 8, 1478 (2018) [Google Scholar]
  99. R. Santbergen, T. Meguro, T. Suezaki et al., GenPro4 optical model for solar cell simulation and its application to multijunction solar cells, IEEE J. Photovolt. 7, 919 (2017) [CrossRef] [Google Scholar]
  100. A. Calcabrini, H. Ziar, O. Isabella et al., A simplified skyline-based method for estimating the annual solar energy potential in urban environments, Nat. Energy 4, 206 (2019) [Google Scholar]
  101. R. Santbergen, V.A. Muthukumar, R.M.E. Valckenborg, W.J.A. van de Wall, A.H.M. Smets, M. Zeman, Calculation of irradiance distribution on PV modules by combining sky and sensitivity maps, Sol. Energy 150, 49 (2017) [Google Scholar]
  102. P. Ricchiazzi, S. Yang, C. Gautier et al., SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, Bull. Am. Meteorol. Soc. 79, 2101 (1998) [Google Scholar]
  103. M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Modelling of thin-film silicon solar cells, Sol. Energy Mater. Sol. Cells 119, 94 (2013) [Google Scholar]
  104. A. Ingenito, O. Isabella, S. Solntsev, M. Zeman, Accurate opto-electrical modeling of multi-crystalline silicon wafer-based solar cells, Sol. Energy Mater. Sol. Cells 123, 17 (2014) [Google Scholar]
  105. S. Mariotti, E. Köhnen, F. Scheler et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells, Science 381, 63 (2023) [Google Scholar]
  106. T. Jung, H. Song, H. Ahn, G. Kang, A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon, Sol. Energy 103, 253 (2014) [Google Scholar]
  107. A. Rehman, E.P. Van Kerschaver, E. Aydin et al., Electrode metallization for scaled perovskite/silicon tandem solar cells: challenges and opportunities, Prog. Photovolt. Res. Appl. 31, 429 (2023) [Google Scholar]
  108. R. Wittecka, H. Schulte-Huxela, H. Holst et al., Optimizing the solar cell front side metallization and the cell interconnection for high module power output, Energy Procedia 92, 531 (2016) [Google Scholar]
  109. M.Z. Jacobson, V. Jadhav, World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels, Sol. Energy 169, 55 (2018) [Google Scholar]
  110. Y. Zhao, Hydrogenated nanocrystalline silicon-based layers for silicon heterojunction and perovskite/c-Si tandem solar cells, Ph.D. thesis, Delft University of Technology, 2023 [Google Scholar]
  111. C.U. Kim, J.C. Yu, E.D. Jung, I.Y. Choi, W. Park, H. Lee, I. Kim, D.K. Lee, K.K. Hong, M.H. Song, Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells, Nano Energy 60, 213 (2019) [Google Scholar]
  112. A.D. Khan, F.E. Subhan, A.D. Khan, S.D. Khan, M.S. Ahmad, M.S. Rehan, M. Noman, Optimization of efficient monolithic perovskite/silicon tandem solar cell, Optik 208, 164573 (2020) [Google Scholar]
  113. M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions, Energy Environ. Sci. 10, 1983 (2017) [CrossRef] [Google Scholar]
  114. Y. Wu, A. Fell, K.J. Weber, A step-by-step optimization of the c-Si bottom cell in monolithic perovskite/c-Si tandem devices, Solar RRL 2, 1800193 (2018) [Google Scholar]
  115. G.J. Faturrochman, M.M. De Jong, R. Santbergen, W. Folkerts, M. Zeman, A.H.M. Smets, Maximizing annual yield of bifacial photovoltaic noise barriers, Solar Energy 162, 300 (2018) [Google Scholar]
  116. F.P. Gasparin, F.D. Kipper, F.S. Oliveira, A. Krenzinger, Assessment on the variation of temperature coefficients of photovoltaic modules with solar irradiance, Solar Energy 244, 126 (2022) [Google Scholar]
  117. M. Bastiani, A.J. Mirabelli, Yi. Hou et al., Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering, Nat. Energy 6, 167 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.