Open Access
Issue
EPJ Photovolt.
Volume 16, 2025
Article Number 11
Number of page(s) 12
DOI https://doi.org/10.1051/epjpv/2024045
Published online 14 January 2025
  1. D.V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors, J. Appl. Phys. 45, 3023 (1974) [CrossRef] [Google Scholar]
  2. D.L. Losee, Admittance spectroscopy of impurity levels in Schottky barriers, J. Appl. Phys. 46, 2204 (1975) [CrossRef] [Google Scholar]
  3. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835 (1952) [NASA ADS] [CrossRef] [Google Scholar]
  4. R.K. Ahrenkiel, Measurement of minority-carrier lifetime by time-resolved photoluminescence, Solid State Electron. 35, 239 (1992) [CrossRef] [Google Scholar]
  5. Y. Rosenwaks, Y. Shapira, D. Huppert, Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP, Phys. Rev. B 45, 9108 (1992) [CrossRef] [PubMed] [Google Scholar]
  6. D. Kuciauskas, J.V. Li, M.A. Contreras, J. Pankow, P. Dippo, M. Young, L.M. Mansfield, R. Noufi, D. Levi, Charge carrier dynamics and recombination in graded band gap CuIn_(1-x) Ga_x Se_2 polycrystalline thin-film photovoltaic solar cell absorbers, J. Appl. Phys. 114, 154505 (2013) [CrossRef] [Google Scholar]
  7. M. Maiberg, T. Holscher, S. Zahedi-Azad, W. Franzel, R. Scheer, Investigation of long lifetimes in Cu(In,Ga)Se2 by time-resolved photoluminescence, Appl. Phys. Lett. 107, 122104 (2015) [CrossRef] [Google Scholar]
  8. G. El-Hajje, D. Ory, M. Paire, J.F. Guillemoles, L. Lombez, Contactless characterization of metastable defects in Cu(In,Ga)Se2 solar cells using time-resolved photoluminescence, Sol. Energy Mater. Sol. Cells 145, 462 (2016) [CrossRef] [Google Scholar]
  9. S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states, Phys. Rev. Appl. 2, 034007 (2014) [CrossRef] [Google Scholar]
  10. F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U.W. Paetzold, U. Rau, T. Unold, T. Kirchartz, Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence, Phys. Rev. Appl. 6, 044017 (2016) [CrossRef] [Google Scholar]
  11. M.J. Trimpl, A.D. Wright, K. Schutt, L.R.V. Buizza, Z. Wang, M.B. Johnston, H.J. Snaith, P. Muller-Buschbaum, L.M. Herz, Charge-carrier trapping and radiative recombination in metal halide perovskite semiconductors, Adv. Funct. Mater. 30, 2004312 (2020) [CrossRef] [Google Scholar]
  12. L. Krückemeier, B. Krogmeier, Z. Liu, U. Rau, T. Kirchartz, Understanding transient photoluminescence in halide perovskite layer stacks and solar cells, Adv. Energy Mater. 11, 2003489 (2021) [CrossRef] [Google Scholar]
  13. R. Brüggemann, S. Reynolds, Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers, J. Non-Cryst. Solids 352, 1888 (2006) [CrossRef] [Google Scholar]
  14. R. Bruggemann, M. Xu, J. Alvarez, M. Boutchich, J.-P. Kleider, Radiative recombination coefficient in crystalline silicon at low temperatures < 77 K by combined photoluminescence measurements, Energy Proc. 124, 10 (2017) [CrossRef] [Google Scholar]
  15. J. Giesecke, Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence, Springer Theses (Springer International Publishing, Cham, 2014) [CrossRef] [Google Scholar]
  16. D. Donetsky, S.P. Svensson, L.E. Vorobjev, G. Belenky, Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures, Appl. Phys. Lett. 95, 212104 (2009) [CrossRef] [Google Scholar]
  17. I. Reklaitis, R. Kudzma, S. Miasojedovas, P. Vitta, A. Zukauskas, R. Tomasiunas, I. Pietzonka, M. Strassburg, Photoluminescence decay dynamics in blue and green InGaN LED structures revealed by the frequency-domain technique, J. Electr. Mater. 45, 3290 (2016) [CrossRef] [Google Scholar]
  18. J. Mickevicius, G. Tamulaitis, P. Vitta, A. Zukauskas, M.S. Shur, J. Zhang, J. Yang, R. Gaska, Carrier dynamics in GaN at extremely low excited carrier densities, Solid State Commun. 145, 312 (2008) [CrossRef] [Google Scholar]
  19. M. Pawlak, K. Strzalkowski, Identification of the photoluminescence response in the frequency domain modulated infrared radiometry signal of ZnTe:Cr bulk crystal, Infrared Phys. Technol. 78, 190 (2016) [CrossRef] [Google Scholar]
  20. Q. Sun, A. Melnikov, A. Mandelis, Y. Song, Fully nonlinear photocarrier radiometry / modulated photoluminescence dynamics in semiconductors: theory and applications to quantitative deconvolution of multiplexed photocarrier density wave interference and recombination processes, J. Luminescence 236, 118075 (2021) [CrossRef] [Google Scholar]
  21. A. Melnikov, A. Mandelis, A. Soral, C. Zavala-Lugo, M. Pawlak, Quantitative imaging of defect distributions in CdZnTe wafers using combined deep-level photothermal spectroscopy, photocarrier radiometry, and lock-in carrierography, ACS Appl. Electr. Mater. 3, 2551 (2021) [CrossRef] [Google Scholar]
  22. M. Orgeret, J. Boucher, Caracterisation d’un substrat semiconducteur par technique micro-onde et injection photonique, Rev. Phys. Appl. 13, 29 (1978) [CrossRef] [EDP Sciences] [Google Scholar]
  23. T. Otaredian, Analysis of microwave scattering from semiconductor wafers, Solid-State Electr. 36, 163 (1993) [Google Scholar]
  24. O. Palais, L. Clerc, A. Arcari, M. Stemmer, S. Martinuzzi, Mapping of minority carrier lifetime and mobility in imperfect silicon wafers, Mater. Sci. Eng. B 102, 184 (2003) [CrossRef] [Google Scholar]
  25. I. Reklaitis, F. Nippert, R. Kudžma, T. Malinauskas, S. Karpov, I. Pietzonka, H.J. Lugauer, M. Strassburg, P. Vitta, R. TomašiūnasTomasiunas, A. Hoffmann, Differential carrier lifetime in InGaN-based light-emitting diodes obtained by small-signal frequency-domain measurements, J. Appl. Phys. 121, 035701 (2017) [CrossRef] [Google Scholar]
  26. W. Zhao, B. Bérenguier, C. Rakotoarimanana, A. Goncalves, A. Etcheberry, M. Fregnaux, L. Lombez, J.-F. Guillemoles, Coupled time resolved and high frequency modulated photoluminescence probing surface passivation of highly doped n-type InP samples, J. Appl. Phys. 129, 215305 (2021) [CrossRef] [Google Scholar]
  27. N. Moron, Modelisation analytique et simulation numerique de la technique de photoluminescence modulee appliquee a des materiaux semi-conducteurs, Ph.D. thesis, Université Paris-Saclay, 2021 [Google Scholar]
  28. N. Moron, B. Berenguier, J. Alvarez, J.-P. Kleider, Analytical model of the modulated photoluminescence in semiconductor materials, J. Phys. D: Appl. Phys. 55, 105103 (2022) [CrossRef] [Google Scholar]
  29. M. Maiberg, T. Holscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap, J. Appl. Phys. 118, 105701 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.