Open Access
EPJ Photovolt.
Volume 15, 2024
Article Number 20
Number of page(s) 18
Published online 17 May 2024
  1. Paris Agreement on climate change. [Google Scholar]
  2. European: Green Deal. [Google Scholar]
  3. Fit for 55. [Google Scholar]
  4. Agenda 2030 − sustainable development goals. [Google Scholar]
  5. IPCC, AR6 Synthesis Report: Climate Change 2023 (2023). [Google Scholar]
  6. International Renewable Energy Agency Abu Dhabi, Global energy transformation; A roadmap to 2050 (IRENA, 2019) [Google Scholar]
  7. International Renewable Energy Agency Abu Dhabi, WORLD ENERGY TRANSITIONS Outlook 2023 1.5° C PATHWAY PREVIEW (IRENA, 2023). [Google Scholar]
  8. S. Pescetelli et al., Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm, Nat. Energy 7, 597 (2022). [Google Scholar]
  9. M.L. Parisi, A. Sinicropi, Closing the loop for perovskite solar modules, Nat. Sustain. 4, 754 (2021). [Google Scholar]
  10. IEA, Electricity mix in China, January-November 2020, IEA. [Google Scholar]
  11. IEA, Solar PV manufacturing capacity by country and region, 2021, IEA. [Google Scholar]
  12. K.P. Goetz, A.D. Taylor, Y.J. Hofstetter, Y. Vaynzof, Sustainability in perovskite solar cells, ACS Appl. Mater. Interfaces 13, 1 (2021). [Google Scholar]
  13. V. Fthenakis, P.A. Lynn, Electricity from Sunlight: Photovoltaic-Systems Integration and Sustainability, 2nd edn. (Wiley, 2018) [Google Scholar]
  14. M. A. Green et al., Solar cell efficiency tables (version 62), Prog. Photovolt.: Res. Appl. 31, 651 (2023). [Google Scholar]
  15. A. Reinders, P. Verlinden, W. van Sark, A. Freundlich, Photovoltaic Solar Energy: From Fundamentals to Applications (John Wiley & Sons, 2017) [Google Scholar]
  16. S.J. Fonash, Solar Cell Device Physics, 2nd edn. (Elsevier, 2010) [Google Scholar]
  17. H.J. Snaith, Present status and future prospects of perovskite photovoltaics, Nat. Mater. 17, 372 (2018). [Google Scholar]
  18. S.-P. Feng et al., Roadmap on commercialization of metal halide perovskite photovoltaics, J. Phys. Mater. 6, 032501 (2023). [Google Scholar]
  19. NREL Best Research-Cell Efficiency Chart. [Google Scholar]
  20. G. Giuliano, A. Bonasera, G. Arrabito, B. Pignataro, Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges, Solar RRL 5, 2100702 (2021). [Google Scholar]
  21. D. B. Ritzer et al., Translucent perovskite photovoltaics for building integration, Energy Environ. Sci. 16, 2212 (2023). [Google Scholar]
  22. A.S.R. Bati, Y.L. Zhong, P.L. Burn, M.K. Nazeeruddin, P.E. Shaw, M. Batmunkh, Next-generation applications for integrated perovskite solar cells, Commun. Mater. 4, 2 (2023). [Google Scholar]
  23. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells, Chem. Rev. 120, 7867 (2020). [Google Scholar]
  24. M. Stefanelli, L. Vesce, A. Di Carlo, Upscaling of carbon-based perovskite solar module, Nanomaterials 13, 313 (2023). [Google Scholar]
  25. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: materials, methods, and future perspectives, J. Nanomater. 2018, 1 (2018). [Google Scholar]
  26. D.K. Lee, N.G. Park, Materials and methods for high-efficiency perovskite solar modules, Solar RRL 6, 2100455 (2022). [Google Scholar]
  27. A. Ummadisingu, M. Grätzel, Revealing the detailed path of sequential deposition for metal halide perovskite formation, Sci. Adv., 4, 2 (2018). [Google Scholar]
  28. D. Li et al., A review on scaling up perovskite solar cells, Adv. Funct. Mater. 31, 2008621 (2021). [Google Scholar]
  29. H.-J. Kim, H.-S. Kim, N.-G. Park, Progress of perovskite solar modules, Adv. Energy Sustain. Res. 2, 2000051 (2021). [Google Scholar]
  30. S.F. Ahmed et al., Perovskite solar cells: thermal and chemical stability improvement, and economic analysis, Mater. Today Chem. 27, 101284 (2023). [Google Scholar]
  31. Z. Yang, C.C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, A.K.Y. Jen, High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition, Adv. Energy Mater. 5, 1500328 (2015), [Google Scholar]
  32. S.G. Motti et al., Controlling competing photochemical reactions stabilizes perovskite solar cells, Nat. Photonics 13, 532 (2019). [Google Scholar]
  33. L. Vesce et al., Scaling-up of Dye Sensitized Solar Modules (2018). [Google Scholar]
  34. L. Vesce et al., Hysteresis-free planar perovskite solar module with 19.1% efficiency by interfacial defects passivation, Solar RRL 6, 2101095 (2022). [Google Scholar]
  35. R. Frischknecht, Methodology Guidelines on Life Cycle Assessment of Photovoltaic Task 12 PV Sustainability. [Google Scholar]
  36. A. Wade, P. Stolz, R. Frischknecht, G. Heath, P. Sinha, The product environmental footprint (PEF) of photovoltaic modules—Lessons learned from the environmental footprint pilot phase on the way to a single market for green products in the European Union, Prog. Photovolt.: Res. Appl. 26, 553 (2018). [Google Scholar]
  37. J. Zhang, X. Gao, Y. Deng, Y. Zha, C. Yuan, Comparison of life cycle environmental impacts of different perovskite solar cell systems, Sol. Energy Mater. Sol. Cells 166, 9 (2017). [Google Scholar]
  38. S. Maranghi, M.L. Parisi, R. Basosi, A. Sinicropi, The critical issue of using lead for sustainable massive production of perovskite solar cells: a review of relevant literature, Open Res. Eur. 1, 44 (2021). [Google Scholar]
  39. J.A. Alberola-Borràs, R. Vidal, E.J. Juárez-Pérez, E. Mas-Marzá, A. Guerrero, I. Mora-Seró, Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment, Sol. Energy Mater. Sol. Cells 179, 169 (2018). [Google Scholar]
  40. T. Okoroafor, A. Maalouf, S. Oez, V. Babu, B. Wilk, S. Resalati, Life cycle assessment of inkjet printed perovskite solar cells, J. Clean. Prod. 373, 133665 (2022). [Google Scholar]
  41. M. Krebs-Moberg, M. Pitz, T.L. Dorsette, S.H. Gheewala, Third generation of photovoltaic panels: a life cycle assessment, Renew. Energy 164, 556 (2021). [Google Scholar]
  42. L. Vesce et al., Perovskite solar cell technology scaling-up: Eco-efficient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating, Prog. Photovolt.: Res. Appl. 32, 115 (2023). [Google Scholar]
  43. L. Vesce et al., Ambient air blade-coating fabrication of stable triple-cation perovskite solar modules by green solvent quenching, Solar RRL 5, 2100073 (2021), [Google Scholar]
  44. H. Chen et al., A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules, Nature 550, 92 (2017). [Google Scholar]
  45. M. Yang et al., Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization, ACS Energy Lett. 3, 322 (2018). [Google Scholar]
  46. ISO 14040 Environmental management-Life cycle assessment-Principles and framework Management environnemental. [Google Scholar]
  47. ISO 14044 Environmental management-Life cycle assessment-Requirements and guidelines (2006). [Google Scholar]
  48. E. Moreno Ruiz et al., Documentation of changes implemented in the ecoinvent database v3.7 & v3.7.1 (ecoinvent Association, Zürich, Switzerland, 2020) [Google Scholar]
  49. S. Maranghi, M.L. Parisi, R. Basosi, A. Sinicropi, Environmental profile of the manufacturing process of perovskite photovoltaics: harmonization of life cycle assessment studies, Energies 12, 3746 (2019). [Google Scholar]
  50. M. Bidikoudi, C. Simal, E. Stathatos, Low-toxicity perovskite applications in carbon electrode perovskite solar cells—a review, Electronics 10, 1145 (2021). [Google Scholar]
  51. K. Lee et al., A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite, J. Mater. Chem. A 6, 24560 (2018). [Google Scholar]
  52. C. Zhou, S. Lin, Carbon‐electrode based perovskite solar cells: effect of bulk engineering and interface engineering on the power conversion properties, Solar RRL 4, 1900190 (2019). [Google Scholar]
  53. M. Que, B. Zhang, J. Chen, X. Yin, S. Yun, Carbon-based electrode for perovskite solar cells, Mater. Adv. 2, 5560 (2021). [Google Scholar]
  54. A. Mei et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science 345, 295 (2014). [Google Scholar]
  55. L. Cai, L. Liang, J. Wu, B. Ding, L. Gao, B. Fan, Large area perovskite solar cell module, J. Semicond. 38, 014006 (2017). [Google Scholar]
  56. H. Wei et al., Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells, Carbon 93, 861(2015). [Google Scholar]
  57. H. Zhang et al., Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells, Adv. Funct. Mater. 28, 1802985 (2018). [Google Scholar]
  58. P. Kartikay, D. Sadhukhan, A. Yella, S. Mallick, Enhanced charge transport in low temperature carbon-based n-i-p perovskite solar cells with NiOx-CNT hole transport material, Sol. Energy Mater. Sol. Cells 230, 111241 (2021). [Google Scholar]
  59. R. Tsuji et al., Function of porous carbon electrode during the fabrication of multiporous-layered-electrode perovskite solar cells, Photonics 7, 133 (2020). [Google Scholar]
  60. H. Zhang et al., High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering, J. Colloid Interface Sci. 608, 3151 (2022). [Google Scholar]
  61. M. Li et al., Nickel-doped graphite and fusible alloy bilayer back electrode for vacuum-free perovskite solar cells, ACS Energy Lett. 8, 2940 (2023). [Google Scholar]
  62. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells, Nano Lett. 14, 5561(2014). [Google Scholar]
  63. X. Li, F. Zhang, H. He, J.J. Berry, K. Zhu, and T. Xu, On-device lead sequestration for perovskite solar cells, Nature 578, 555 (2020). [Google Scholar]
  64. C. Chen, S. Cheng, L. Cheng, Z. Wang, L. Liao, Toxicity, leakage, and recycling of lead in perovskite photovoltaics, Adv. Energy Mater. 13, 2204144 (2023). [Google Scholar]
  65. R.D. Mendez, B.N. Breen, D. Cahen, Lead sequestration from halide perovskite solar cells with a low-cost thiol-containing encapsulant, ACS Appl. Mater. Interfaces 14, 29766 (2022). [Google Scholar]
  66. M.L. Parisi, A. Sinicropi, Closing the loop for perovskite solar modules, Nat. Sustain. 4, 754 (2021). [Google Scholar]
  67. H. Luo, P. Li, J. Ma, X. Li, H. Zhu, Y. Cheng, Q. Li, Q. Xu, Y. Zhang, Y. Song, Bioinspired cage traps for closed-loop lead management of perovskite solar cells under real-world contamination assessment, Nat. Commun. 14, 4730 (2023). [Google Scholar]
  68. M.Z. Mokhtar, J. He, M. Li, Q. Chen, J.C. Ren K., D.J. Lewis, A.G. Thomas, B.F. Spencer, S.A. Haque, B.R. Saunders, Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells, Chem. Commun. 57, 994 (2021). [Google Scholar]
  69. X. Li, F. Zhang, H. He, J.J. Berry, K. Zhu, T. Xu, On-device lead sequestration for perovskite solar cells, Nature 578, 555 (2020). [Google Scholar]
  70. A. Gargiulo, M.L. Carvalho, P. Girardi, Life cycle assessment of Italian electricity scenarios to 2030, Energies 13, 3852 (2020). [Google Scholar]
  71. A. Gargiulo, P. Girardi, G. Mela, Life Cycle Assessment della produzione di energia elettrica nazionale attuale ed al 2030 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.