Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Article Number 18
Number of page(s) 26
DOI https://doi.org/10.1051/epjpv/2024015
Published online 15 May 2024
  1. N.M. Haegel, P. Verlinden, M. Victoria, P. Altermatt, H. Atwater, T. Barnes, C. Breyer, C. Case, S. De Wolf, C. Deline, M. Dharmrin, B. Dimmler, M. Gloeckler, J.C. Goldschmidt, B. Hallam, S. Haussener, B. Holder, U. Jaeger, A. Jaeger-Waldau, I. Kaizuka, H. Kikusato, B. Kroposki, S. Kurtz, K. Matsubara, S. Nowak, K. Ogimoto, C. Peter, I.M. Peters, S. Philipps, M. Powalla, U. Rau, T. Reindl, M. Roumpani, K. Sakurai, C. Schorn, P. Schossig, R. Schlatmann, R. Sinton, A. Slaoui, B.L. Smith, P. Schneidewind, BJ. Stanbery, M. Topic, W. Tumas, J. Vasi, M. Vetter, E. Weber, A.W. Weeber, A. Weidlich, D. Weiss, A.W. Bett, Photovoltaics at multi-terawatt scale: Waiting is not an option, Science 380, 39 (2023). https://doi.org/10.1126/science.adf6957 [Google Scholar]
  2. A. Müller, L. Friedrich, C. Reichel, S. Herceg, M. Mittag, D.H. Neuhaus, A comparative life cycle assessment of silicon PV modules: impact of module design, manufacturing location and inventory, Sol. Energy Mater. Sol. Cells 230, 111277 (2021). https://doi.org/10.1016/j.solmat.2021.111277 [Google Scholar]
  3. L. Wang, Y. Zhang, M. Kim, M. Wright, R. Underwood, R.S. Bonilla, B. Hallam, Sustainability evaluations on material consumption for terawatt-scale manufacturing of silicon-based tandem solar cells, Prog. Photovolt.: Res. Appl. 31, 1442 (2023). https://doi.org/10.1002/pip.3687 [Google Scholar]
  4. B. Hallam, M. Kim, Y. Zhang, L. Wang, A. Lennon, P. Verlinden, P.P. Altermatt, P.R. Dias, The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050, Prog. Photovolt. Res. Appl. 31, 598 (2023). https://doi.org/10.1002/pip.3661 [Google Scholar]
  5. Y. Zhang, M. Kim, L. Wang, P. Verlinden, B. Hallam, Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: Challenges and opportunities related to silver, indium and bismuth consumption, Energy Environ. Sci. 14, 5587 (2021). https://doi.org/10.1039/D1EE01814K [Google Scholar]
  6. Y. Liang, R. Kleijn, A. Tukker, E. van der Voet, Material requirements for low-carbon energy technologies: a quantitative review, Renew. Sustain. Energy Rev. 161, 112334 (2022). https://doi.org/10.1016/j.rser.2022.112334 [Google Scholar]
  7. Y. Abdelilah, H. Bahar, F. Briens, P. Bojek, T. Criswell, K. Kurumi, J. Moorhouse, G. Rodriguez, K. Veerakumar, Special Report on Solar PV Global Supply Chains, Tech. rep., International Energy Agency (2022). https://doi.org/10.1787/9e8b0121-en [Google Scholar]
  8. S. Weckend, A. Wade, G.A. Heath, End of Life Management: Solar Photovoltaic Panels, Tech. Rep. NREL/TP-6A20-73852, 1561525, IRENA (2016). https://doi.org/10.2172/1561525 [Google Scholar]
  9. G.A. Heath, T.J. Silverman, M. Kempe, M. Deceglie, D. Ravikumar, T. Remo, H. Cui, P. Sinha, C. Libby, S. Shaw, K. Komoto, K. Wambach, E. Butler, T. Barnes, A. Wade, Research and development priorities for silicon photovoltaic module recycling to support a circular economy, Nat. Energy 5, 502 (2020). https://doi.org/10.1038/s41560-020-0645-2 [Google Scholar]
  10. J. Kirchherr, N.-H.N. Yang, F. Schulze-Spüntrup, M.J. Heerink, K. Hartley, Conceptualizing the circular economy (revisited): an analysis of 221 definitions, Resour. Conserv. Recycl. 194, 107001 (2023). https://doi.org/10.1016/j.resconrec.2023.107001 [Google Scholar]
  11. J. Kirchherr, D. Reike, M. Hekkert, Conceptualizing the circular economy: an analysis of 114 definitions, SSRN Electron. J. 127, 221 (2017). https://doi.org/10.2139/ssrn.3037579 [Google Scholar]
  12. DS. Smith, S. Jones, Circularity Indicators: An Approach to Measuring Circularity: Methodology, Tech. rep., Ellen MacArthur Foundation (2019) [Google Scholar]
  13. J. Potting, M.P. Hekkert, E. Worrell, A. Hanemaaijer, Circular Economy: Measuring Innovation in the Product Chain, Tech. Rep. 2544, PBL Publishers (2017). https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf [Google Scholar]
  14. M. Saidani, B. Yannou, Y. Leroy, F. Cluzel, A. Kendall, A taxonomy of circular economy indicators, J. Clean. Prod. 207, 542 (2019). http://www.sciencedirect.com/science/article/pii/S0959652618330221 [Google Scholar]
  15. F. Figge, A.S. Thorpe, P. Givry, L. Canning, E. Franklin-Johnson, Longevity and circularity as indicators of eco-efficient resource use in the circular economy, Ecol. Econ. 150, 297 (2018). https://doi.org/10.1016/j.ecolecon.2018.04.030 [Google Scholar]
  16. J. Brändström, M. Saidani, Comparison between circularity metrics and LCA: a case study on circular economy strategies, J. Clean. Prod. 371, 133537 (2022). https://doi.org/10.1016/j.jclepro.2022.133537 [Google Scholar]
  17. A.R. Zubas, M. Fischer, E. Gervais, S. Herceg, S. Nold, Combining circularity and environmental metrics to assess material flows of PV silicon, EPJ Photovolt. 14, 10 (2023). https://doi.org/10.1051/epjpv/2022031 [Google Scholar]
  18. A.G. Hernandez, J.M. Cullen, Exergy: A universal metric for measuring resource efficiency to address industrial decarbonisation, Sustain. Prod. Consum. 20, 151 (2019). https://doi.org/10.1016/j.spc.2019.05.006 [Google Scholar]
  19. N.J. Bartie, Y.L. Cobos-Becerra, M. Fröhling, R. Schlatmann, M.A. Reuter, The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: assessment and opportunities, Resour. Conserv. Recycl. 169, 105516 (2021). https://doi.org/10.1016/j.resconrec.2021.105516 [Google Scholar]
  20. J.C. Romero, P. Linares, Exergy as a global energy sustainability indicator. a review of the state of the art, Renew. Sustain. Energy Rev. 33, 427 (2014). https://doi.org/10.1016/j.rser.2014.02.012 [Google Scholar]
  21. J. Korhonen, A. Honkasalo, J. Seppälä, Circular economy: the concept and its limitations, Ecol. Econ. 143, 37 (2018). https://doi.org/10.1016/j.ecolecon.2017.06.041 [Google Scholar]
  22. E. Gervais, S. Herceg, S. Nold, K.-A. Weiß, Sustainability strategies for PV: framework, status and needs, EPJ Photovolt. 12, 5 (2021). https://doi.org/10.1051/epjpv/2021005 [Google Scholar]
  23. A. Wade, T. Sauer, H. Neuhaus, L. Probst, R. Taylor, D. Moser, C. Rohr, R. Rossi, Eco-design and energy labeling for photovoltaic modules, inverters and systems − enabling a sustainable value chain in the EU?, in 38th European Photovoltaic Solar Energy Conference and Exhibition (2021), p. 6. https://doi.org/10.4229/EUPVSEC20212021-4DO.11.1 [Google Scholar]
  24. SETO FY21 − Photovoltaics. https://www.energy.gov/eere/solar/seto-fy21-photovoltaics [Google Scholar]
  25. J. Jean, M. Woodhouse, V. Bulović, Accelerating photovoltaic market entry with module replacement, Joule 3, 2824 (2019). https://doi.org/10.1016/j.joule.2019.08.012 [Google Scholar]
  26. G. Yang, M. Wang, C. Fei, H. Gu, Z.J. Yu, A. Alasfour, Z.C. Holman, J. Huang, Recycling silicon bottom cells from end-of-life perovskite-silicon tandem solar cells, ACS Energy Lett. 8, 1639 (2023). https://doi.org/10.1021/acsenergylett.3c00123 [Google Scholar]
  27. A.N. Madrigal, U. Iyer-Raniga, R.J. Yang, Exploring PV waste management solutions using circular strategies, J. Sustain. Res. 5, 2 (2023). https://doi.org/10.20900/jsr20230008 [Google Scholar]
  28. S. Ovaitt, H. Mirletz, S. Seetharaman, T. Barnes, PV in the circular economy, a dynamic framework analyzing technology evolution and reliability impacts, ISCIENCE 25, 103488 (2021). https://doi.org/10.1016/j.isci.2021.103488 [Google Scholar]
  29. S. Ovaitt, H. Mirletz, M. Mendez Ribo, D. Jordan, K. Anderson, M. Deceglie, A. Hegedus, NREL/PV_ICE, NREL (2021). https://doi.org/10.5281/zenodo.4324010 [Google Scholar]
  30. L. Abenante, F. De Lia, R. Schioppo, S. Castello, M. Izzi, Modeling the efficiency degradation of actual Si-module arrays, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, Waikoloa Village, HI, 2018), pp. 1155–1157. https://doi.org/10.1109/PVSC.2018.8548234 [Google Scholar]
  31. J. Walzberg, A. Carpenter, G.A. Heath, Role of the social factors in success of solar photovoltaic reuse and recycle programmes, Nat. Energy 6, 913 (2021). https://doi.org/10.1038/s41560-021-00888-5 [Google Scholar]
  32. E. Gervais, S. Shammugam, L. Friedrich, T. Schlegl, Raw material needs for the large-scale deployment of photovoltaics − Effects of innovation-driven roadmaps on material constraints until 2050, Renew. Sustain. Energy Rev. 137, 110589 (2021). https://doi.org/10.1016/j.rser.2020.110589 [Google Scholar]
  33. PV Waste & Legislation. http://data.europa.eu/eli/dir/2012/19/oj [Google Scholar]
  34. H. Hieslmair, Assessing the ‘useful life' of PV Modules: reaching for 40 and 50 year module useful life (Feb. 2021). https://www.youtube.com/watch?v=M7BHcxxugwY&feature=youtu.be [Google Scholar]
  35. S.E. Sofia, H. Wang, A. Bruno, J.L. Cruz-Campa, T. Buonassisi, I.M. Peters, Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market, Sustain. Energy Fuels 4, 852 (2019). https://doi.org/10.1039/C9SE00948E [Google Scholar]
  36. T. Curtis, H. Buchanan, G. Heath, L. Smith, S. Shaw, Solar Photovoltaic Module Recycling: A Survey of U.S. Policies and Initiatives, Tech. Rep. NREL/TP-6A20-74124, 1774839, MainId:6273, National Renewable Energy Laboratory (NREL) (2021). https://doi.org/10.2172/1774839 [Google Scholar]
  37. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html [Google Scholar]
  38. Champion Photovoltaic. Module Efficiency Chart. https://www.nrel.gov/pv/module-efficiency.html [Google Scholar]
  39. S. Bächle, P. Dold, PERC Solar Cells from 100 Percent Recycled Silicon − Fraunhofer ISE (2022). https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/solar-cells-from-recycled-silicon.html [Google Scholar]
  40. X. Feng, Q. Guo, J. Xiu, Z. Ying, K.W. Ng, L. Huang, S. Wang, H. Pan, Z. Tang, Z. He, Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine, Cell Rep. Phys. Sci. 2, 100341 (2021). https://doi.org/10.1016/j.xcrp.2021.100341 [Google Scholar]
  41. L. Wagner, S. Mastroianni, A. Hinsch, Reverse manufacturing enables perovskite photovoltaics to reach the carbon footprint limit of a glass substrate, Joule 4, 882 (2020). https://doi.org/10.1016/j.joule.2020.02.001 [Google Scholar]
  42. P. Sinha, M. Cossette, J.-F. Ménard, End-of-Life CdTe PV recycling with semiconductor refining, in 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2012), pp. 4653–4656. https://doi.org/10.4229/27thEUPVSEC2012-6CV.4.9 [Google Scholar]
  43. M. Raugei, Methodological Guidelines on Net Energy Analysis of Photovoltaic Electricity, 2nd Edition 2021, Tech. Rep. T12–20:2021, IEA PVPS Task 12 (2021). https://iea-pvps.org/wp-content/uploads/2021/06/IEA_PVPS_Task12_Methodological_Guidelines_NEA_2021_report.pdf [Google Scholar]
  44. D.J. Murphy, M. Raugei, M. Carbajales-Dale, B. Rubio Estrada, Energy return on investment of major energy carriers: review and harmonization, Sustainability 14, 7098 (2022). https://doi.org/10.3390/su14127098 [Google Scholar]
  45. M. Raugei, S. Sgouridis, D. Murphy, V. Fthenakis, R. Frischknecht, C. Breyer, U. Bardi, C. Barnhart, A. Buckley, M. Carbajales-Dale, D. Csala, M. de Wild-Scholten, G. Heath, A. Jæger-Waldau, C. Jones, A. Keller, E. Leccisi, P. Mancarella, N. Pearsall, A. Siegel, W. Sinke, P. Stolz, Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response, Energy Policy 102, 377 (2017). https://doi.org/10.1016/j.enpol.2016.12.042 [Google Scholar]
  46. J.M. Kuitche, Statistical Lifetime Prediction for Photovoltaic Modules (2010). https://www1.eere.energy.gov/solar/pdfs/pvrw2010_kuitche.pdf [Google Scholar]
  47. D.C. Jordan, K. Anderson, K. Perry, M. Muller, M. Deceglie, R. White, C. Deline, Photovoltaic fleet degradation insights, Prog. Photovolt.: Res. Appl. 30, 1166 (2022). https://doi.org/10.1002/pip.3566 [Google Scholar]
  48. M. Theristis, J.S. Stein, C. Deline, D. Jordan, C. Robinson, W. Sekulic, A. Anderberg, D.J. Colvin, J. Walters, H. Seigneur, B.H. King, Onymous early-life performance degradation analysis of recent photovoltaic module technologies, Prog. Photovolt.: Res. Appl. 31, 149 (2023). https://doi.org/10.1002/pip.3615 [Google Scholar]
  49. Ultra Low-Carbon Solar Alliance. https://ultralowcarbonsolar.org/ [Google Scholar]
  50. H. Mirletz, S. Ovaitt, S. Sridhar, T.M. Barnes, Circular economy priorities for photovoltaics in the energy transition, PLoS One 17, 9 (2022). https://doi.org/10.1371/journal.pone.0274351 [Google Scholar]
  51. M. Fischer, International Technology Roadmap for Photovoltaic (ITRPV) 2018 Results, Tech. Rep. 10th, ITRPV (March 2019). https://pv-manufacturing.org/wp-content/uploads/2019/03/ITRPV-2019.pdf [Google Scholar]
  52. M. Fan, Z. Yu, W. Ma, L. Li, Life cycle assessment of crystalline silicon wafers for photovoltaic power generation, Silicon 13, 3177 (2021). https://doi.org/10.1007/s12633-020-00670-4 [Google Scholar]
  53. G. Masson, I. Kaizuka, Trends in Photovoltaic Applications 2019, Tech. Rep. IEA PVPS T1–36:2019, IEA-PVPS (Aug. 2019). https://iea-pvps.org/wp-content/uploads/2020/02/5319-iea-pvps-report-2019-08-lr.pdf [Google Scholar]
  54. G. Masson, I. Kaizuka, Trends in Photovoltaic Applications 2021, Tech. Rep. IEA PVPS T1–41 2021, IEA PVPS (2021). https://iea-pvps.org/wp-content/uploads/2022/01/IEA-PVPS-Trends-report-2021-4.pdf [Google Scholar]
  55. NSRDB. https://nsrdb.nrel.gov/ [Google Scholar]
  56. IEC 60904-1: 2020 | IEC Webstore | water management, smart city, rural electrification, solar power, solar panel, photovoltaic, PV, LVDC. https://webstore.iec.ch/publication/32004 [Google Scholar]
  57. S.A. Pelaez, C. Deline, S.M. MacAlpine, B. Marion, J.S. Stein, R.K. Kostuk, Comparison of bifacial solar irradiance model predictions with field validation, IEEE J. Photovoltaics 9, 82 (2019). https://doi.org/10.1109/JPHOTOV.2018.2877000 [Google Scholar]
  58. IRENA, RE Time Series. https://public.tableau.com/app/profile/irena.resource/viz/IRENARETimeSeries/Charts [Google Scholar]
  59. Electricity Data Explorer | Open Source Global Electricity Data. https://ember-climate.org/data/data-tools/data-explorer/ [Google Scholar]
  60. M.O. Reese, S. Glynn, M.D. Kempe, D.L. McGott, M.S. Dabney, T.M. Barnes, S. Booth, D. Feldman, N.M. Haegel, Increasing markets and decreasing package weight for high-specific-power photovoltaics, Nature Energy 3, 1002 (2018). https://doi.org/10.1038/s41560-018-0258-1 [Google Scholar]
  61. X. Tian, S.D. Stranks, F. You, Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells, Sci. Adv. 6, eabb0055 (2020). https://doi.org/10.1126/sciadv.abb0055 [Google Scholar]
  62. M. Fischer, P. Ni, A. Metz, G. Erfurt, C.-C. Li, M. Woodhouse, G. Xing, I. Saha, Q. Wang, International Technology Roadmap for Photovoltaics: 2023, Tech. rep., VDMA, ITRPV (2023) [Google Scholar]
  63. P. Mints, Report SPV − Supply 2023, Tech. rep., SPV Market Research (2023) [Google Scholar]
  64. U. S. Department of Labor, US Department of Labor adds polysilicon from China to ‘List of Goods Produced by Child Labor or Forced Labor’ | U. S. Department of Labor (Jun. 2021). https://www.dol.gov/newsroom/releases/ILAB/ILAB20210624 [Google Scholar]
  65. U.E. Programme, Sand and Sustainability: Finding new solutions for environmental governance of global sand resources, Tech. rep., UNEP, Geneva, Switzerland (2019). https://unepgrid.ch/storage/app/media/documents/Sand_and_sustainability_UNEP_2019.pdf [Google Scholar]
  66. A. Anctil, Comparing the carbon footprint of monocrystalline silicon solar modules manufactured in China and the United States, in PVSC 2021 (IEEE, 2021), p. 3 [Google Scholar]
  67. B.S. Howard, N.E. Hamilton, M. Diesendorf, T. Wiedmann, Modeling the carbon budget of the Australian electricity sector's transition to renewable energy, Renew. Energy 125, 712 (2018). https://doi.org/10.1016/j.renene.2018.02.013 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.