Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘Recent Advances in Photovoltaics 2022’, edited by Mohamed Amara, Thomas Fix, Jean-Paul Kleider, Judikaël Le Rouzo and Denis Mencaraglia
Article Number 4
Number of page(s) 11
DOI https://doi.org/10.1051/epjpv/2023034
Published online 09 February 2024
  1. P.R. Shukla et al. (Eds.), Summary for policymakers, in Climate Change 2022 - Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023), pp. 3–48. https://doi.org/10.1017/9781009157926.001 [Google Scholar]
  2. K. Raworth, A safe and just space for humanity − Can we live within the doughnut? (Koninklijke Brill NV, 2012) doi: https://doi.org/10.1163/2210-7975_HRD-9824-0069 [Google Scholar]
  3. J. Rockström et al., A safe operating space for humanity, Nature 461, 472 (2009) [CrossRef] [PubMed] [Google Scholar]
  4. W. Steffen et al., Planetary boundaries: guiding human development on a changing planet, Science 347, 1259855 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. O. Alsauskas et al., Global EV outlook 2023, Int. Energy Agency (2023). https://www.iea.org/reports/global-ev-outlook-2023 [Google Scholar]
  6. Renewables 2022, Int. Energy Agency (2022) [Google Scholar]
  7. IEA/Renewables/Solar PV, IEA. [Consulted 4 Sept. 2023]. https://www.iea.org/energy-system/renewables/solar-pv [Google Scholar]
  8. ITRPV 2021, VDMA 12 (2022). https://www.vdma.org/international-technology-roadmap-photovoltaic [Google Scholar]
  9. P.J. Verlinden, Future challenges for photovoltaic manufacturing at the terawatt level, J. Renew. Sustain. Energy 12, 053505 (2020) [CrossRef] [Google Scholar]
  10. Y. Zhang, M. Kim, L. Wang, P. Verlinden, B. Hallam, Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption, Energy Environ. Sci. 14, 5587 (2021) [CrossRef] [Google Scholar]
  11. B. Hallam et al., The silver learning curve for photovoltaics and projected silver demand for net‐zero emissions by 2050, Prog. Photovolt. Res. Appl. 31, 598 (2022) [Google Scholar]
  12. Silver Commodity, Markets Insider. https://markets.businessinsider.com/commodities/silver-price [Google Scholar]
  13. A. Lennon, M. Lunardi, B. Hallam, P. Dias, The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050, preprint (2021), https://doi.org/10.21203/rs.3.rs-846247/v1 [Google Scholar]
  14. Résilience des matières premières critiques: la voie à suivre pour un renforcement de la sécurité et de la durabilité, Commission Européenne (2020) [Google Scholar]
  15. Bureau de Recherches Géologique et Minière, Portail français des ressources minérales non énergétiques, Mineral Info. [Consulted 10 Jan. 2023]. https://mineralinfo.fr [Google Scholar]
  16. J.E. Tilton, Assessing the threat of mineral depletion, Minerals & Energy - Raw Materials Report. 18, 33 (2003) [CrossRef] [Google Scholar]
  17. A. De Rose, T. Geipel, D. Eberlein, A. Kraft, M. Nowottnick, Interconnection of silicon heterojunction solar cells by infrared soldering − solder joint analysis and temperature study, in 36th European Photovoltaic Solar Energy Conference and Exhibition (2019), pp. 229–240. https://doi.org/10.4229/EUPVSEC20192019-2CO.11.4 [Google Scholar]
  18. A. De Rose, D. Erath, T. Geipel, Kraft, Achim, U. Eitner, Low-temperature soldering for the interconnection of silicon heterojunction solar cells, in 33rd Eur. Photovolt. Sol. Energy Conf. Exhib. (2017), pp. 710–714. https://doi.org/10.4229/EUPVSEC20172017-2AV.3.1 [Google Scholar]
  19. Registration, Authorisation and Restriction of Chemicals (REACH) (2022), Vol. 02006R1907 [Google Scholar]
  20. A. Valero, A. Valero, G. Calvo, A. Ortego, Material bottlenecks in the future development of green technologies, Renew. Sustain. Energy Rev. 93, 178 (2018) [CrossRef] [Google Scholar]
  21. S.D. Buteyn et al., Mineral commodity summaries 2022 (United States Geological Survey, 2022) [Google Scholar]
  22. J.J. Barry et al., Mineral commodity summaries 2017 (United States Geological Survey, 2017) [Google Scholar]
  23. J.C. Goldschmidt, L. Wagner, R. Pietzcker, L. Friedrich, Technological learning for resource efficient terawatt scale photovoltaics, Energy Environ. Sci. 14, 5147 (2021) [CrossRef] [Google Scholar]
  24. T.E. Graedel et al., Recycling rates of metals, United Nations Environment Programme, Status report 2 (2011) [Google Scholar]
  25. R.J. Garcier, F. Verrax, Critiques mais non recyclées: expliquer les limites au recyclage des terres rares en Europe, Flux 108, 51 (2017) [CrossRef] [Google Scholar]
  26. OPEP, Alternatives économiques [Google Scholar]
  27. Petroleum and other liquids, U.S. Energy Information Administration. [Consulted 24 Oct. 2023] https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production [Google Scholar]
  28. A. Valero, A. Valero, G. Calvo, Resumen y análisis crítico del informe especial de la Agencia Internacional de la Energía: El Rol de los minerales críticos en la transición hacia energías limpias, Rev. Metal. 57, 197 (2021) [Google Scholar]
  29. B. Pedroletti, En Indonésie, ruée vers le nickel, or noir du futur, Le Monde, 11 novembre 2022. [Consulted 14 Nov. 2022] https://www.lemonde.fr/international/article/2022/11/11/en-indonesie-ruee-vers-le-nickel-or-noir-du-futur_6149502_3210.html [Google Scholar]
  30. Controverses minières − Pour en finir avec certaines contrevérités sur la mine et les filières minérales − Volet 1, SystExt, nov. 2021. [Consulted 17 Oct. 2021] https://www.systext.org/sites/all/documents/RP_SystExt_Controverses-Mine_VOLET-1_Nov2021_vf.pdf [Google Scholar]
  31. Silver institute, The silver institute. [Consulted 6 Jan. 2023] https://www.silverinstitute.org/silver-supply-demand/ [Google Scholar]
  32. ITRPV 2023, VDMA 14 (2023). https://www.vdma.org/international-technology-roadmap-photovoltaic [Google Scholar]
  33. N.T. Nassar, T.E. Graedel, E.M. Harper, By-product metals are technologically essential but have problematic supply, Sci. Adv. 1, e1400180 (2015) [CrossRef] [Google Scholar]
  34. Mercury from non-ferrous metals mining and smelting, UNEP Global Mercury Partnership, Geneva, Study report, 2021 [Google Scholar]
  35. J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6, e04691 (2020) [CrossRef] [PubMed] [Google Scholar]
  36. L. Bach, R.D. Nørregaard, V. Hansen, K. Gustavson, Review on environmental risk assessment of mining chemicals used for mineral separation in the mineral resources industry and recommendations for Greenland (Aarhus University, Department of Bioscience, Scientific report 203, sept. 2016). https://dce2.au.dk/pub/SR203.pdf [Google Scholar]
  37. G.M. Mudd, The sustainability of mining in Australia: key production trends and their environmental implications for the future, Department of Civil Engineering, Monash University and Mineral Policy Institute, Research Report 5 (2009) [Google Scholar]
  38. T. Norgate, S. Jahanshahi, Low grade ores − Smelt, leach or concentrate? Miner. Eng. 23, 65 (2010) [CrossRef] [Google Scholar]
  39. S. Northey, S. Mohr, G. Mudd, Z. Weng, D. Giurco, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl. 83, 190 (2013) [Google Scholar]
  40. R.J. Lowe, P. Drummond, Solar, wind and logistic substitution in global energy supply to 2050-Barriers and implications, Renew. Sustain. Energy Rev. 153, 111720 (2022) [CrossRef] [Google Scholar]
  41. B. Hallam et al., Key material limitations and challenges towards sustainable silicon PV manufacturing at the Terwatt scale, présenté à UNSW Spree, 23 mars 2022. [Consulted 5 Sep. 2022]. http://www2.pv.unsw.edu.au/videos/Brett-Hallam-23March2022/seminar.php [Google Scholar]
  42. Restriction of Hazardous Substances in electrical and electronic equipment, Vol. 2011 /65/EU. 2011 [Google Scholar]
  43. International Tin Association. [Consulted 17 Jan. 2023] https://www.internationaltin.org/it-reports/ [Google Scholar]
  44. Bureau de Recherches Géologique et Minière, Le marché de l'étain en 2022, Mineral Info. https://www.mineralinfo.fr/fr/ecomine/marche-de-letain-2022 [Google Scholar]
  45. A. Lachowicz et al., Patterning techniques for copper electoplated metallization of silicon heterojunction cells, in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA: IEEE, juin 2021, pp. 1530–1533. https://doi.org/10.1109/PVSC43889.2021.9518493 [CrossRef] [Google Scholar]
  46. E. Hache, C. Barnet, G.-S. Seck, Le nickel dans la transition énergétique: pourquoi parle-t-on de métal du diable? IFP Energies nouvelles. [Consulted 17 Jan. 2023]. https://www.ifpenergiesnouvelles.fr/article/nickel-transition-energetique-pourquoi-parle-t-metal-du-diable# [Google Scholar]
  47. Fiche de synthèse sur la criticité des métaux − Le nickel, BRGM & COmité pour les MEtaux Stratégiques (2016) [Google Scholar]
  48. M. Grohol et al., Study on the critical raw materials for the EU, European Comission (2023) [Google Scholar]
  49. A. Valero, A. Valero, Thermodynamic rarity and recyclability of raw materials in the energy transition: the need for an in-spiral economy, Entropy 21, 873 (2019) [CrossRef] [Google Scholar]
  50. J.I. Bilbao, G. Heath, A. Norgren, M.M. Lunardi, A. Carpenter, R. Corkish, PV module design for recycling guidelines 2021, IEA-PVPS, T12–23:2020 (2021) [Google Scholar]
  51. J. Shin, J. Park, N. Park, A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers, Sol. Energy Mater. Sol. Cells 162, 1 (2017) [CrossRef] [Google Scholar]
  52. P.J.M. Isherwood, Reshaping the module: the path to comprehensive photovoltaic panel recycling, Sustainability, 14, 1676 (2022) [CrossRef] [Google Scholar]
  53. J. Yu et al., Copper metallization of electrodes for silicon heterojunction solar cells: Process, reliability and challenges, Sol. Energy Mater. Sol. Cells 224, 110993 (2021) [CrossRef] [Google Scholar]
  54. X.M. Zhang, X.-L. Yang, B. Wang, Electrical properties of electrically conductive adhesives from epoxy and silver-coated copper powders after sintering and thermal aging, Int. J. Adhes. Adhes. 105, 102785 (2021) [CrossRef] [Google Scholar]
  55. Z.S. Hamrah, V.A. Lashgari, M.H.D. Mohammadi, D. Uner, M. Pourabdoli, Microstructure, resistivity, and shear strength of electrically conductive adhesives made of silver-coated copper powder, Microelectron. Reliab. 127, 114400 (2021) [CrossRef] [Google Scholar]
  56. J. Dupuis, E. Saint-Sernin, O. Nichiporuk, P. Lefillastre, D. Bussery, R. Einhaus, NICE module technology - From the concept to mass production: A 10 years review, in 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA: IEEE, juin 2012, pp. 003183–003186. https://doi.org/10.1109/PVSC.2012.6318254 [CrossRef] [Google Scholar]
  57. R. Einhaus et al., Recycling and reuse potential of NICE PV-modules, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa Village, HI: IEEE, juin 2018, pp. 561–564. https://doi.org/10.1109/PVSC.2018.8548307 [Google Scholar]
  58. D. Reinwand et al., All copper NICE modules, in: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA: IEEE, juin 2018, pp. 0628–0631. https://doi.org/10.1109/PVSC.2018.8547749 [Google Scholar]
  59. M. Mittag, T. Neff, S. Hoffmann, M. Ebert, U. Eitner, H. Wirth, TPedge: glass-glass photovoltaic module for BIPV applications, in Engineered Transparency, mai 2016, p. 8 [Google Scholar]
  60. M. Galiazzo et al., Fine line double printing and advanced process control for cell manufacturing, Energy Procedia 67, 116 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.