Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
Article Number 42
Number of page(s) 20
DOI https://doi.org/10.1051/epjpv/2024038
Published online 06 December 2024
  1. SolarPower Europe, EU Market Outlook for Solar Power (2023) [Google Scholar]
  2. P. Biermayr et al., Innovative Energietechnologien in Österreich Marktentwicklung 2023 (2024). Available: https://nachhaltigwirtschaften.at/de/veranstaltungen/2024/20240619-energiewende-markttrends-2023.php [accessed: Dec. 04, 2023] [Google Scholar]
  3. EAG, Bundesgesetz über den Ausbau von Energie aus erneuerbaren Quellen (Erneuerbaren-Ausbau-Gesetz − EAG), BGBl. I Nr. 150/2021 idF BGBl. I Nr. 233/2022. 2021 [Google Scholar]
  4. N. Hampl, G. Marterbauer, A. Nowshad, M. Strebl, A. Salmhofer, L. Grohs, Erneuerbare Energien 2023 − Der jährliche Stimmungsbarometer der österreichischen Bevölkerung zu erneuerbaren Energien. Institut für Strategisches Management, Wirtschaftsuniversität Wien, Deloitte Österreich, Wien Energie, Jänner 2023. Available: https://www2.deloitte.com/at/de/seiten/energy-and-resources/artikel/erneuerbare-energien-in-oesterreich.html [accessed: Dec. 03, 2023] [Google Scholar]
  5. Ertex Solar, Campus TUM, Ertexsolar. Available: https://www.ertex-solar.at/our-references/campus-tum/ [accessed: Dec.16, 2023] [Google Scholar]
  6. Ertex Solar, Sun Monument, greeting to the sun, Ertexsolar. Available: https://www.ertex-solar.at/our-references/sun-monument-greeting-to-the-sun/ [accessed: Dec. 16, 2023] [Google Scholar]
  7. Hauber & Graf GmbH, Referenzprojekte und Installationshinweise zum Wattway Modul. s.a. Available: https://www.wattwaybycolas.com/media/documents/documents-en-allemand/220301-wattway-hauber-graf_web-all.pdf [accessed: Dec. 12, 2023] [Google Scholar]
  8. Y. Tian, A. Nussbaum, J. Ma, China's Built a Road So Smart It Will Be Able to Charge Your Car, Bloomberg.com, 2018. Available: https://www.bloomberg.com/news/features/2018-04-11/the-solar-highway-that-can-recharge-electric-cars-on-the-move [accessed: Dec. 16, 2023] [Google Scholar]
  9. Y. Zhang, T. Ma, H. Yang, Z. Li, Y. Wang, Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement, Appl. Energy 342, 121122(2023), https://doi.org/10.1016/j.apenergy.2023.121122 [CrossRef] [Google Scholar]
  10. S. Li, T. Ma, D. Wang, Photovoltaic pavement and solar road: a review and perspectives, Sustain. Energy Technol. Assess. 55, 102933 (2023), https://doi.org/doi:10.1016/j.seta.2022.102933 [Google Scholar]
  11. B. Zhou et al., Solar/road from “forced coexistence” to “harmonious symbiosis”, Appl. Energy 255, 113808 (2019), https://doi.org/doi:10.1016/j.apenergy.2019.113808 [CrossRef] [Google Scholar]
  12. H. Hu, D. Vizzari, X. Zha, R. Roberts, Solar pavements: a critical review, Renew. Sustain. Energy Rev. 152, 111712 (2021), https://doi.org/doi:10.1016/j.rser.2021.111712 [CrossRef] [Google Scholar]
  13. Y. Dai, Y. Yin, Y. Lu, Strategies to facilitate photovoltaic applications in road structures for energy harvesting, Energies 14, 7097 (2021), https://doi.org/doi:10.3390/en14217097 [CrossRef] [Google Scholar]
  14. A. Northmore, S. Tighe, Innovative pavement design: are solar roads feasible? , in 2012 Conference of the Transportation Association of Canada (Fredericton, 2012) [Google Scholar]
  15. T. Ma, H. Yang, W. Gu, Z. Li, S. Yan, Development of walkable photovoltaic floor tiles used for pavement, Energy Convers. Manag. 183, 764 (2019), https://doi.org/doi:10.1016/j.enconman.2019.01.035 [CrossRef] [Google Scholar]
  16. M. Rahman, G. Mabrouk, S. Dessouky, Development of a photovoltaic-based module for harvesting solar energy from pavement: a lab and field assessment, Energies 16, 8 (2023), https://doi.org/10.3390/en16083338 [Google Scholar]
  17. H. Hu, X. Zha, C. Niu, Z. Wang, R. Lv, Structural optimization and performance testing of concentrated photovoltaic panels for pavement, Appl. Energy 356, 122362 (2024), https://doi.org/10.1016/j.apenergy.2023.122362 [CrossRef] [Google Scholar]
  18. F. Khan, B.D. Rezgui, J.H. Kim, Reliability study of c-Si PV module mounted on a concrete slab by thermal cycling using electroluminescence scanning: application in future solar roadways, Materials 13, 470 (2020), https://doi.org/10.3390/ma13020470 [Google Scholar]
  19. F. Khan, J.H. Kim, Performance degradation analysis of c-Si PV modules mounted on a concrete slab under hot-humid conditions using electroluminescence scanning technique for potential utilization in future solar roadways, Materials 12, 4047 (2019), https://doi.org/10.3390/ma12244047 [Google Scholar]
  20. R.A. Coutu, D. Newman, M. Munna, J.H. Tschida, S. Brusaw, Engineering tests to evaluate the feasibility of an emerging solar pavement technology for public roads and highways, Technologies 8, 9 (2020), https://doi.org/10.3390/technologies8010009 [PubMed] [Google Scholar]
  21. K. Sewalt, Inspectie SolaRoad kits Haaksbergen en Blauwestad, 2020. Available: https://www.solaroad.nl/blog/bfd_download/5801/ [accessed: Dec. 19, 2023] [Google Scholar]
  22. S.A.W. Klerks, W.C. van der Poel, M.S. de Wit, PV SolaRoad Infrastructuur (PV-SIN), 2017. Available: https://projecten.topsectorenergie.nl/storage/app/uploads/public/5c8/651/e44/5c8651e443f95650098993.pdf [accessed: Dec. 19, 2023] [Google Scholar]
  23. R. Solar, Rolling Solar − Final Report, 2022. Available: https://rollingsolar.eu/u/files/Final%20report%20Rolling%20Solar.pdf [accessed: Dec. 19, 2023] [Google Scholar]
  24. F. Colberts, A. Kingma, N.H.C. Gómez, D. Roosen, S. Ahmad, Z. Vroon, Feasibility study on thin-film PV laminates for road integration, Prog. Photovolt.: Res. Appl. 32, 687 (2024), https://doi.org/doi:10.1002/pip.3814 [CrossRef] [Google Scholar]
  25. Enphase Energy, Enphase IQ 7, IQ 7 + and IQ 7X Microinverter Data Sheet (DE-DE). Available: https://enphase.com/de-de/download/iq7-series-microinverters-qdcc-datenblatt [accessed: Jan. 02, 2022] [Google Scholar]
  26. OVE E 8101, Elektrische Niederspannungsanlagen, Wien (2019) [Google Scholar]
  27. A. Erber, Fehleranalyse von verkehrsflächenintegrierten Photovoltaikelementen am Beispiel des solaren Parkplatzes in Teesdorf, Master thesis, FH Technikum Wien, 2024, https://resolver.obvsg.at/urn:nbn:at:at-ftw:1-62263 [Google Scholar]
  28. M. Köntges et al., Review of failures of photovoltaic modules (International Energy Agency, 2014) [Google Scholar]
  29. M. Köntges et al., Assessment of photovoltaic module failures in the field (International Energy Agency, 2017) [Google Scholar]
  30. H. Werner et al., Qualification of Photovoltaic (PV) Power Plants using Mobile Test Equipment (International Energy Agency, 2021) [Google Scholar]
  31. IEC TS 60904-13, Photovoltaic devices − Part 13: Electroluminescence of photovoltaic modules, 2018 [Google Scholar]
  32. T. Kropp, M. Schubert, J.H. Werner, Quantitative prediction of power loss for damaged photovoltaic modules using electroluminescence, Energies 11, 1172 (2018), https://doi.org/10.3390/en11051172 [CrossRef] [Google Scholar]
  33. M. Köntges, A. Morlier, G. Eder, E. Fleiß, B. Kubicek, J. Lin, Review: Ultraviolet fluorescence as assessment tool for photovoltaic modules, IEEE. J. Photovolt. 10, 616 (2020), https://doi.org/10.1109/JPHOTOV.2019.2961781 [CrossRef] [Google Scholar]
  34. G. Ujvari, Prüfbericht − Leistungsmessung von 40 PV-Modulen gemäß IEC 60904-1 Ed. 3. 0 (Projektnummer 2. 00. 80593. 1. 0) (2022) [Google Scholar]
  35. G. Ujvari, Prüfbericht − Kennlinienmessung von 19 PV-Modulen gemäß IEC 60904-1 Ed. 3. 0 (Projektnummer: 2. 00. 80593. 1. 0a) (2023) [Google Scholar]
  36. IEC 60891, Photovoltaic devices − Procedures for temperature and irradiance corrections to measured I-V characteristics (2021) [Google Scholar]
  37. GeoSphere Austria, GeoSphere Austria Data Hub. Available: https://data.hub.geosphere.at/ [accessed: Jan. 27, 2024] [Google Scholar]
  38. LEM International SA, Datasheet − Current transducer CKSR, 2022. Available: https://www.lem.com/sites/default/files/products_datasheets/cksr_xx-np_v14.pdf [accessed: Jan. 31, 2024] [Google Scholar]
  39. LEM International SA, Datasheet − Voltage Transducer DVC 1000-P, 2022. Available: https://www.lem.com/sites/default/files/products_datasheets/dvc_1000-p.pdf [accessed: Jan. 31, 2024] [Google Scholar]
  40. DEWESoft, Datasheet −MonoDAQ-U-X, 2022. Available: https://www.monodaq.com/shop/media/uploads/UX/DataSheet_MonoDAQ-U-X_v1.6_2022-06-01.pdf [accessed: Jan. 31 2024] [Google Scholar]
  41. Photovoltaikbuero, pvTector-Measuring device for detecting line interruptions on solar generators, Transmitter and receiver, pvBuero. Available: https://photovoltaikbuero.de/product/pvtector/ [accessed: Jun. 29, 2024] [Google Scholar]
  42. G. Oreski, B. Ottersböck, A. Omazic, Degradation processes and mechanisms of encapsulants, in Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (Elsevier, 2019), pp. 135–152 [Google Scholar]
  43. M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, B. Bjørneklett, Quantifying the Risk of Power Loss in PV Modules Due to Micro Cracks, in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion (WIP-Munich, 2010) p. 8, https://doi.org/10.4229/25THEUPVSEC2010-4BO.9.4 [Google Scholar]
  44. S. Pingel, Y.-B. Zemen, O. Frank, T. Geipel, J. Berghold, Mechanical stability of solar cells within solar panels, in Proc. 24th European Photovoltaic Energy Conf. (2009) https://doi.org/10.4229/24thEUPVSEC2009-4AV.3.49 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.