Issue
EPJ Photovolt.
Volume 15, 2024
Special Issue on ‘EU PVSEC 2024: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and Gabriele Eder
Article Number 44
Number of page(s) 16
DOI https://doi.org/10.1051/epjpv/2024039
Published online 23 December 2024
  1. Y. N. Fuyuki, Quantitative imaging of excess minority carrier density in crystalline silicon cells by Luminoscopy, in 21st European Photovoltaic Solar Energy Conference (2006) [Google Scholar]
  2. U. Jahn, Review on infrared and electroluminescence imaging for PV field applications, Report IEA-PVPS T13-10: 2018 [Google Scholar]
  3. VDI 2879 SPEC, Inspection of installations and buildings with UAVs (unmanned aerial vehicles), 2018 [Google Scholar]
  4. ITRPV, International Technology Roadmap for Photovoltaic (ITRPV), 2024 [Google Scholar]
  5. Solar Power Europe, Global Market Outlook for solar power 2023−2027 [Google Scholar]
  6. M. Koentges, Elektrolumineszenzmessung an PV-Modulen, Photovolt. Aktuell, 7/8, 36 (2008) [Google Scholar]
  7. M. Koentges, Review on failures of photovoltaic modules, Report IEA-PVPS T13-01: 2014 [Google Scholar]
  8. M. Koentges, Assessment of PV modules failures in the field, Report IEA-PVPS T13-09: 2017 [Google Scholar]
  9. W. Herrmann, Qualification of photovoltaic (PV) power plants using mobile test equipment, Report IEA-PVPS T13-24: 2021 [Google Scholar]
  10. B. Jaeckel, Looking into the future, PV Mag. 10, 46 (2013) [Google Scholar]
  11. MBJ PV-Modul Bewertungskriterien, MBJ PV-modul bewertungskriterien − bewert-ungskriterien für die PV-modulprüfung im mobilen PV-testcenter, MBJ (2014) [Google Scholar]
  12. PV-Riss, Bewertung von Zellrissen in kristallinen Silizium-Photovoltaikmodulen mittels bildgebender Verfahren, BMBK Wipano funding by PTJ, 2022−2024 [Google Scholar]
  13. E. Sander, Schneckenspuren, ETA Green 1, 3 (2011) [Google Scholar]
  14. S. Richter et al., Understanding the snail trail effect in silicon solar modules on microstructural scale, in 27th European Photovoltaic Solar Energy Conference (2012), http://www.doi.org/10.4229/27thEUPVSEC2012-4BV.3.7 [Google Scholar]
  15. I. Duerr et al., Silver grid finger corrosion on snail track affected PV modules investigation on degradation products and mechanisms, Energy Pro. 98, 74 (2016) [Google Scholar]
  16. IEC 61215-series: Terrestrial photovoltaic (PV) modules − design qualification and type approval [Google Scholar]
  17. IEC TR 62759-1: Photovoltaic (PV) modules − transportation testing − part 1: transportation and shipping of module package units [Google Scholar]
  18. IEC TS 62782: Photovoltaic (PV) modules − cyclic (dynamic) mechanical load testing [Google Scholar]
  19. IEC 62892: Extended thermal cycling of PV module [Google Scholar]
  20. IEC TS 63209-1: Photovoltaic modules − extended-stress testing [Google Scholar]
  21. IEC TS 63209-2: Photovoltaic modules − extended-stress testing − part 2: polymeric component materials [Google Scholar]
  22. IEC TR 63279: Derisking photovoltaic modules − sequential and combined accelerated stress testing [Google Scholar]
  23. IEC 62446-1: Photovoltaic (PV) systems − requirements for testing, documentation and maintenance − part 1: grid connected systems − documentation, commissioning tests and inspection [Google Scholar]
  24. IEC 62446-2: Photovoltaic (PV) systems − requirements for testing, documentation and maintenance − part 2: grid connected systems − maintenance of PV systems [Google Scholar]
  25. IEC 60364-7-712: Low voltage electrical installations − part 7-712: requirements for special installations or locations − solar photovoltaic (PV) power supply systems [Google Scholar]
  26. IEC 62446-3: Photovoltaic (PV) systems − requirements for testing, documentation and maintenance − part 3: photovoltaic modules and plants − outdoor infrared thermography [Google Scholar]
  27. IEC 62446-4: Photovoltaic (PV) system − requirements for testing, documentation and maintenance − part 4: photovoltaic modules and plants − outdoor electroluminescence imaging, project team working on document [Google Scholar]
  28. IEC TS 60904-13: Photovoltaic devices − part 13: electroluminescence of photovoltaic modules [Google Scholar]
  29. K. Bedrich et al., Electroluminescence imaging of PV devices: camera calibration and image correction, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2016), https://doi.org/10.1109/PVSC.2016.7749875 [Google Scholar]
  30. VDE SPEC 90031: Electroluminescence (EL) of photovoltaic modules − terms and classification [Google Scholar]
  31. M. Koentges et al., Quantitative analysis of PV-modules by electroluminescence images for quality control, in 24th European Photovoltaic Solar Energy Conference (2009) [Google Scholar]
  32. M. Koentges et al., Quantifying the risk of power loss in PV modules due to micro cracks, in 25th European Photovoltaic Solar Energy Conference (2010), http://www.doi.org/10.4229/25thEUPVSEC2010-4BO.9.4 [Google Scholar]
  33. T. Potthoff et al., Detection of the voltage distribution in photovoltaic modules by electroluminescence imaging, Prog. Photovolt.: Res. Appl. 18, 100 (2010) [CrossRef] [Google Scholar]
  34. S. Kajari-Schroeder et al., Spatial and directional distribution of cracks in silicon PV modules after uniform mechanical loads, in 37th IEEE Photovoltaic Specialists Conference Seattle, Washington (2011) [Google Scholar]
  35. M. Koentges et al., Crack statistic of crystalline silicon photovoltaic modules, in 26th European Photovoltaic Solar Energy Conference (2011), http://www.doi.org/10.4229/26thEUPVSEC2011-4EO.3.6 [Google Scholar]
  36. M. Koentges et al., The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks, Sol. Energy Mater. Sol. Cells 95, 1131 (2011) [CrossRef] [Google Scholar]
  37. S. Kajari-Schroeder et al., Criticality of cracks in PV modules, Energy Procedia 27, 658 (2012) [Google Scholar]
  38. B. Jaeckel et al., Long term statistics on micro cracks and their impact on performance, in 33rd European Photovoltaic Solar Energy Conference (2017), http://www.doi.org/10.4229/EUPVSEC20172017-5CO.5.6 [Google Scholar]
  39. J. Arp et al., Elektrisches Schalten von Mikrocracks: Leistungsverlust: Ja, Nein, Ja (PV Symposium, 2016) [Google Scholar]
  40. C. Buerhop-Lutz, Qualitätsmanagement rissbehafteter PV-Module (PV Symposium, 2019) [Google Scholar]
  41. PVTech.org, TOPCon modules endure ‘significant degradation’ in damp heat testing compared to PERC, accessed 29.06.2024 [Google Scholar]
  42. C. Sen et al., Buyer aware: three new failure modes in TOPCon modules absent from PERC technology, Sol. Energy Mater. Sol. Cells 272, 112877 (2024), https://doi.org/10.1016/j.solmat.2024.112877 [CrossRef] [Google Scholar]
  43. C. Sen et al., Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride, Sol. Energy Mater. Sol. Cells 262, 112554 (2023), https://doi.org/10.1016/j.solmat.2023.112554 [CrossRef] [Google Scholar]
  44. X. Wu et al., Addressing sodium ion-related degradation in SHJ cells by the application of nano-scale barrier layers, Sol. Energy Mater. Sol. Cells 264, 112604 (2024), https://doi.org/10.1016/j.solmat.2023.112604 [CrossRef] [Google Scholar]
  45. T. Silverman et al., Movement of cracked silicon solar cells during module temperature changes, in 47th IEEE Photovoltaic Specialists Conference (2019), https://doi.org/10.1109/pvsc40753.2019.8981150 [Google Scholar]
  46. C. Buerhop et al., Evolution of cell cracks in PV-modules under field and laboratory conditions, Prog. Photovolt. 26, 261 (2018) [CrossRef] [Google Scholar]
  47. J. Lincoln et al., Microcrack formation in silicon solar cells during cold temperatures, in 46th IEEE Photovoltaic Specialists Conference (Florida, 2019) [Google Scholar]
  48. C. Buerhop-Lutz et al., Influence of the module temperature on the performance and EL-image of precracked PV-modules, in 35th European Photovoltaic Solar Energy Conference (2018), http://www.doi.org/10.4229/35thEUPVSEC20182018-5CV.1.1 [Google Scholar]
  49. C. Buerhop-Lutz et al., Performance analysis of pre-cracked PV-modules at cyclic loading conditions, in 35th European Photovoltaic Solar Energy Conference (2018), http://www.doi.org/10.4229/35thEUPVSEC20182018-6BO.6.6 [Google Scholar]
  50. C. Buerhop-Lutz et al., Analysis of digitized PV-module/system data for failure diagnosis, in 36th European Photovoltaic Solar Energy Conference (2019), https://doi.org/10.4229/EUPVSEC20192019-5BO.7.6 [Google Scholar]
  51. W. Muehleisen et al., Outdoor detection and visualization of hailstorm damages of photovoltaic plants, Renew. Energy 118, 138 (2018) [Google Scholar]
  52. M. Koentges et al., Mean degradation rates in PV systems for various kinds of PV module failures, in 32nd European Photovoltaic Solar Energy Conference (2016), https://doi.org/10.4229/EUPVSEC20162016-5DP.1.2 [Google Scholar]
  53. D.C. Jordan, S. R. Kurtz, Photovoltaic degradation rates − an analytical review, Prog. Photovolt.: Res. Appl. 21, 12 (2011), https://doi.org/10.1002/pip.1182 [Google Scholar]
  54. D.C. Jordan et al., Compendium of photovoltaic degradation rates, Prog. Photovolt.: Res. Appl. 24, 978 (2016), https://doi.org/10.1002/pip.2744 [CrossRef] [Google Scholar]
  55. D.C. Jordan et al., PV field reliability status − analysis of 100 000 solar systems, Prog. Photovolt.: Res. Appl. 28, 739 (2020), https://doi.org/10.1002/pip.3262 [Google Scholar]
  56. FAU Erlangen Nürnberg EL image database for AI-Training, https://github.com/zae-bayern/elpv-dataset/tree/master/images, accessed 02.10.2024 [Google Scholar]
  57. C. Buerhop-Lutz et al., A benchmark for visual identification of defective solar cells in electroluminescence imagery, in European PV Solar Energy Conference and Exhibition (2018), https://doi.org/10.4229/35thEUPVSEC20182018-5CV.3.15 [Google Scholar]
  58. C. Buerhop-Lutz et al., Applying deep learning algorithms to EL-images for predicting the module power, in European PV Solar Energy Conference and Exhibition (2019), http://www.doi.org/10.4229/EUPVSEC20192019-4CO.1.2 [Google Scholar]
  59. S. Deitsch et al., Segmentation of photovoltaic module cells in uncalibrated electrolumines-cence images, Mach. Vis. Appl. 32, 84 (2021), https://doi.org/10.1007/s00138-021-01191-9 [CrossRef] [Google Scholar]
  60. S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, C. Riess, Automatic classification of defective photovoltaic module cells in electroluminescence images, Sol. Energy 185, 455 (2019), https://doi.org/10.1016/j.solener.2019.02.067 [CrossRef] [Google Scholar]
  61. Case Western Reserve University EL image database for AI-Training, https://osf.io/qt5hj/ [Google Scholar]
  62. A.M. Karimi et al., Automated pipeline for photovoltaic module electroluminescence image processing and degradation feature classification, IEEE J. Photovolt. 9, 1324 (2019), http://doi.org/10.1109/JPHOTOV.2019.2920732 [CrossRef] [Google Scholar]
  63. Duramat EL image database for AI-Training, https://datahub.duramat.org/project/electroluminescence-image-analysis, https://github.com/hackingmaterials/pv-vision/tree/main [Google Scholar]
  64. M. Kottek et al., World map of the Köppen-Geiger climate classification − updated, Meteorol. Z. 15, 259 (2006), https://doi.org/10.1127/0941-2948/2006/0130 [CrossRef] [Google Scholar]
  65. J. Ascencio-Vasquez et al., Methodology of Koppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance, Sol. Energy 191, 672 (2019), https://doi.org/10.1016/j.solener.2019.08. 072 [CrossRef] [Google Scholar]
  66. B. Jaeckel et al., Mission profile concept for PV modules: use case middle east deserts vs temperate European climate, EPJ Photovolt. 14, 39 (2023), https://doi.org/10.1051/epjpv/2023030 [CrossRef] [EDP Sciences] [Google Scholar]
  67. P. Schenk, Influence on number of busbars and cell technology on power loss after mechanical and thermos-mechanical stress testing, in preparation [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.