Open Access
EPJ Photovolt.
Volume 15, 2024
Article Number 23
Number of page(s) 11
Published online 17 June 2024
  1. IEA, Trends in photovoltaic applications, 2022. [Google Scholar]
  2. K. Ramachandran, P. Lee, M. Motyka, Floatovoltaics enters the renewable energy mix: Floating solar panels are now commercially viable, Deloitte Insights (2021). [Google Scholar]
  3. G. Kakoulaki, R. Gonzalez Sanchez, A. Gracia Amillo, S. Szabo, M. De Felice, F. Farinosi, L. De Felice, B. Bisselink, R. Seliger, I. Kougias, A. Jaeger-Waldau, Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe, Renew. Sustain. Energy Rev. 171, 112989 (2023). [CrossRef] [Google Scholar]
  4. X. Costoya, M. deCastro, D. Carvalho, B. Arguilé-Pérez, M. Gómez-Gesteira, Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula, Renew. Sustain. Energy Rev. 157, 112037 (2022). [CrossRef] [Google Scholar]
  5. N. Lee, U. Grunwald, E. Rosenlieb, H. Mirletz, A. Aznar, R. Spencer, S. Cox, Hybrid floating solar photovoltaics-hydropower systems: benefits and global assessment of technical potential, Renew Energy 162, 1415 (2020). [CrossRef] [Google Scholar]
  6. World Bank Group, Where Sun Meets Water: Floating Solar Market Report, Washington, DC, 2019. [Google Scholar]
  7. H. Liu, V. Krishna, J. Lun Leung, T. Reindl, L. Zhao, Field experience and performance analysis of floating PV technologies in the tropics, Prog. Photovolt.: Res. Appl. 26, 957 (2018). [CrossRef] [Google Scholar]
  8. M. Dörenkämper, A. Wahed, A. Kumar, M. de Jong, J. Kroon, T. Reindl, The cooling effect of floating PV in two different climate zones: a comparison of field test data from the Netherlands and Singapore, Solar Energy 214, 239 (2021). [CrossRef] [Google Scholar]
  9. T. Kjeldstad, D. Lindholm, E. Marstein, J. Selj, Cooling of floating photovoltaics and the importance of water temperature, Solar Energy 218, 544 (2021). [CrossRef] [Google Scholar]
  10. L. Micheli, The temperature of floating photovoltaics: case studies, models and recent findings, Solar Energy 242, 234 (2022). [CrossRef] [Google Scholar]
  11. I.M. Peters, A.M. Nobre, Deciphering the thermal behavior of floating photovoltaic installations, Solar Energy Adv. 2, 100007 (2022). [CrossRef] [Google Scholar]
  12. D. Lindholm, T. Kjeldstad, J. Selj, E.S. Marstein, H.G. Fjær, Heat loss coefficients computed for floating PV modules, Prog. Photovolt.: Res. Appl. 29, 1262 (2021). [CrossRef] [Google Scholar]
  13. L. Liu, Q. Wang, H. Lin, H. Li, Q. Sun, R. Wennersten, Power generation efficiency and prospects of floating photovoltaic systems, Energy Procedia 105, 1136 (2017). [CrossRef] [Google Scholar]
  14. S.Z. Golroodbari, W. van Sark, Simulation of performance differences between offshore and land-based photovoltaic systems, Prog. Photovolt.: Res. Appl. 28, 873 (2020). [CrossRef] [Google Scholar]
  15. B. Amiot, M. Chiodetti, R. Le Berre, K. Radouane, D. Boublil, P. Dupeyrat, K. Vermeyen, S. Giroux-Julien, Floating photovoltaics − on-site measurements in temperate climate and lake influence on module behavior, in 37th European Photovoltaic Solar Energy Conference and Exhibition (2020), pp. 1772–1776 [Google Scholar]
  16. J. ho Choi, J.H. Hyun, W. Lee, B.G. Bhang, Y.K. Min, H.K. Ahn, Power performance of high density photovoltaic module using energy balance model under high humidity environment, Sol. Energy 219, 50 (2021). [CrossRef] [Google Scholar]
  17. G. Chowdhury, M. Haggag, J. Poortmans, How cool is floating PV? A state-of-the-art review of floating PV's potential gain and computational fluid dynamics modeling to find its root cause, EPJ Photovolt. 14, 24 (2023). [Google Scholar]
  18. S. Kaplanis, E. Kaplani, J.K. Kaldellis, PV temperature prediction incorporating the effect of humidity and cooling due to seawater flow and evaporation on modules simulating floating PV conditions, Energies 16, 12 (2023). [CrossRef] [Google Scholar]
  19. M. Almaktar, H.A. Rahman, M.Y. Hassan, S. Rahman, Climate-based empirical model for PV module temperature estimation in tropical environment, Appl. Sol. Energy 49, 192 (2013). [CrossRef] [Google Scholar]
  20. E. Barykina, A. Hammer, Modeling of photovoltaic module temperature using Faiman model: sensitivity analysis for different climates, Sol. Energy 146, 401 (2017). [CrossRef] [Google Scholar]
  21. D. Faiman, Assessing the outdoor operating temperature of photovoltaic modules, Prog. Photovolt.: Res. Appl. 16, 307 (2008). [CrossRef] [Google Scholar]
  22. S. Mathew, Wind Energy: Fundamentals, Resource Analysis and Economics (Springer, Berlin/Heidelberg, 2006) [Google Scholar]
  23. D. Lindholm, J. Selj, T. Kjeldstad, H. Fjær, V. Nysted, CFD modelling to derive U-values for floating PV technologies with large water footprint, Sol. Energy 238, 238 (2022). [CrossRef] [Google Scholar]
  24. W.C.L. Kamuyu, J.R. Lim, C.S. Won, H.K. Ahn, Prediction model of photovoltaic module temperature for power performance of floating PVs, Energies 11, 447 (2018). [CrossRef] [Google Scholar]
  25. G.M. Tina, F. Bontempo Scavo, L. Merlo, F. Bizzarri, Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants, Appl. Energy 281, 116084 (2021). [Google Scholar]
  26. A. Vasel, F. Iakovidis, The effect of wind direction on the performance of solar PV plants, Energy Convers. Manag. 153, 455 (2017). [CrossRef] [Google Scholar]
  27. D. Waterworth, A. Armstrong, Southerly winds increase the electricity generated by solar photovoltaic systems, Sol. Energy 202, 123 (2020). [CrossRef] [Google Scholar]
  28. E. Kaplani, S. Kaplanis, Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination, Sol. Energy 107, 443 (2014). [CrossRef] [Google Scholar]
  29. N.A.S. Elminshawy, A. Osama, D.G. El-Damhogi, E. Oterkus, A.M.I. Mohamed, Simulation and experimental performance analysis of partially floating PV system in windy conditions, Sol. Energy 230, 1106 (2021). [CrossRef] [Google Scholar]
  30. T. Kjeldstad, V.S. Nysted, M. Kumar, S. Oliveira-Pinto, G. Otnes, D. Lindholm, J. Selj, The performance and amphibious operation potential of a new floating photovoltaic technology, Sol. Energy 239, 242 (2022). [CrossRef] [Google Scholar]
  31. PVsyst, Project design > Array and system losses > Array Thermal losses, accessed: Feb. 7, 2024. [Google Scholar]
  32. D. Shankar, P.N. Vinayachandran, A.S. Unnikrishnan, The monsoon currents in the north Indian Ocean, Prog. Oceanogr. 52, 63 (2002). [CrossRef] [Google Scholar]
  33. D.L. King, W.E. Boyson, J.A. Kratochvill, Photovoltaic Array Performance Model (2004) [Google Scholar]
  34. D.C. Wilcox, Turbulence Modeling for CFD (DCW Industries, 2006) [Google Scholar]
  35. S. Rodriguez, Applied Computational Fluid Dynamics and Turbulence Modeling (Springer Verlag, 2019). [Google Scholar]
  36. W.C. Swinbank, Long-wave radiation from clear skies, Q. J. R. Meteorol. Soc. 89, 339 (1963). [CrossRef] [Google Scholar]
  37. IEC, IEC 61853 Photovoltaic (PV) module performance testing and energy rating − Part 2: Spectral responsivity, incidence angle and module operating temperature measurements (2016) [Google Scholar]
  38. H. Goverde, D. Goossens, J. Govaerts, V. Dubey, F. Catthoor, K. Baert, J. Poortmans, J. Driesen, Spatial and temporal analysis of wind effects on PV module temperature and performance, Sustain. Energy Technol. Assess. 11, 36 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.