EPJ Photovolt.
Volume 14, 2023
Special Issue on ‘WCPEC-8: State of the Art and Developments in Photovoltaics’, edited by Alessandra Scognamiglio, Robert Kenny, Shuzi Hayase and Arno Smets
Article Number 4
Number of page(s) 9
Section Optics of Thin Films, TCOs
Published online 24 January 2023
  1. S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk, Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Separat. Purificat. Technol. 133, 16 (2014) [CrossRef] [Google Scholar]
  2. N. Milenkovic, T. Rachow, S. Janz et al., Epitaxial Growth of High Quality n-type Silicon Foils in a Quasi-inline APCVD Reactor, Energy Procedia 77, 613 (2015) [CrossRef] [Google Scholar]
  3. R. Brendel, Review of Layer Transfer Processes for Crystalline Thin-Film Silicon Solar Cells, Jpn. J. Appl. Phys. 40, 4431 (2001) [CrossRef] [Google Scholar]
  4. V. Torres-Costa, Development of interference filters based on multilayer porous silicon structures, Mater. Sci. Eng. C 23, 1043 (2003) [CrossRef] [Google Scholar]
  5. V. Torres-Costa, R.J. Martín-Palma, J.M. Martínez-Duart, Optical characterization of porous silicon films and multilayer filters, Appl. Phys. A 79, 1919 (2004) [CrossRef] [Google Scholar]
  6. C.F. Ramirez-Gutierrez, J.D. Castaño-Yepes, M.E. Rodriguez-Garcia, Porosity and roughness determination of porous silicon thin films by genetic algorithms, Optik 173, 271 (2018) [CrossRef] [Google Scholar]
  7. H.J. Vahlman, S. Al-Hajjawi, J. Haunschild et al., Monitoring of Porous Silicon Layers Used for Epitaxial Wafer Production With Inline Reflectance Spectroscopy, IEEE J. Photovoltaics 12, 989 (2022) [CrossRef] [Google Scholar]
  8. H. Kwak, S. Ryu, S. Cho et al., Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning, Light: Adv. Manufactur. 2, 1 (2021) [CrossRef] [Google Scholar]
  9. J. Liu, D. Zhang, D. Yu et al., Machine learning powered ellipsometry, Light Sci. Appl. 10, 55 (2021) [CrossRef] [Google Scholar]
  10. J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren et al., Rapid and accurate thin film thickness extraction via UV-Vis and machine learning. Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing, Joule 2, 1410 (2018) [CrossRef] [Google Scholar]
  11. L. Rédei, M. Fried, I. Bársony et al., A modified learning strategy for neural networks to support spectroscopic ellipsometric data evaluation, Thin Solid Films 313–314, 149 (1998) [CrossRef] [Google Scholar]
  12. S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning (2015), Vol. 37, pp. 448–456 [Google Scholar]
  13. A. Paszke, S. Gross, F. Massa et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library, in Advances in Neural Information Processing Systems 32 (2019), pp. 8026-8037 [Google Scholar]
  14. A. Wolf, Sintered porous silicon: physical properties and applications for layer-transfer silicon thin-film solar cells (2007) [Google Scholar]
  15. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. 416, 636 (1935) [NASA ADS] [CrossRef] [Google Scholar]
  16. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in International Conference on Learning Representations (2014), Vol. 3, pp. 1–13 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.