Issue
EPJ Photovolt.
Volume 11, 2020
Chalcogenide Materials for Photovoltaics 2020
Article Number 10
Number of page(s) 5
DOI https://doi.org/10.1051/epjpv/2020007
Published online 08 December 2020
  1. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 55), Prog. Photovoltaics Res. Appl. 28 , 3 (2020) [Google Scholar]
  2. G. Yin et al., Optoelectronic enhancement of ultrathin CuIn1–x Gax Se2 solar cells by nanophotonic contacts, Adv. Opt. Mater. 5 , 1600637 (2017) [CrossRef] [Google Scholar]
  3. B. Vermang et al., Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In, Ga)Se2 solar cells, Prog. Photovoltaics Res. Appl. 22 , 1023 (2014) [CrossRef] [Google Scholar]
  4. G. Birant et al., Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells, Sol. Energy 207, 1002 (2020) [CrossRef] [Google Scholar]
  5. D. Ledinek, O. Donzel-gargand, M. Sköld, J. Keller, M. Edo, Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers, Sol. Energy Mater. Sol. Cells 187 , 160 (2018) [CrossRef] [Google Scholar]
  6. C.M. Iaru, Characterization of hafnium oxide thin films for applications in high efficiency c-Si solar cells, Eindhoven University of Technology, 2015 [Google Scholar]
  7. D. Necas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis, Cent. Eur. J. Phys. 10, 181 (2012) [Google Scholar]
  8. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley-Interscience, USA, 2006) [Google Scholar]
  9. R. Kotipalli, B. Vermang, J. Joel, R. Rajkumar, M. Edoff, D. Flandre, Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface, AIP Adv. 5 , 107101 (2015) [CrossRef] [Google Scholar]
  10. R.R. Kotipalli, Surface passivation effects of aluminum oxide on ultra-thin CIGS solar cells, Université Catholique de Louvain, 2016 [Google Scholar]
  11. J. Löckinger et al., The use of HfO2 in a point contact concept for front interface passivation of Cu(In, Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells 195 , 209 (2019) [Google Scholar]
  12. D. Ledinek, J. Keller, C. Hägglund, W.C. Chen, M. Edoff, Effect of NaF precursor on alumina and hafnia rear contact passivation layers in ultra-thin Cu(In,Ga)Se2 solar cells, Thin Solid Films 683 , 156 (2019) [CrossRef] [Google Scholar]
  13. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835 (1952) [CrossRef] [Google Scholar]
  14. E.H. Nicollian, J.R. Brews, Extraction of interface trap properties from the conductance, in: MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, 2003), pp. 212– 221 [Google Scholar]
  15. S.M. Sze, K.K. Ng, Metal-insulator-semiconductor capacitors, in: Physics of Semiconductor Devices (Wiley, 2006), p. 219 [Google Scholar]
  16. X.Y. Zhang et al., Surface passivation of silicon using HfO2 thin films deposited by remote plasma atomic layer deposition system, Nanoscale Res. Lett. 12 , 324 (2017) [CrossRef] [PubMed] [Google Scholar]
  17. X.Y. Zhang et al., Simulation and fabrication of HfO2 thin films passivating si from a numerical computer and remote plasma ALD, Appl. Sci. 7 , 1 (2017) [Google Scholar]
  18. A.B. Meinel, M.P. Meinel, P.E. Glaser, Applied Solar Energy: An Introduction, Phys. Today 30, 66 (1977) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.