Open Access
Issue
EPJ Photovolt.
Volume 9, 2018
Article Number 4
Number of page(s) 7
Section Organic Materials and Devices
DOI https://doi.org/10.1051/epjpv/2018003
Published online 09 April 2018
  1. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science 258, 1474 (1992) [CrossRef] [PubMed] [Google Scholar]
  2. N.S. Sariciftci, D. Braun, C. Zhang, et al., Semiconducting polymer‐buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett. 62, 585 (1993) [CrossRef] [Google Scholar]
  3. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett. 78, 841 (2001) [CrossRef] [Google Scholar]
  4. G. Li, V. Shrotriya, J. Huang, et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4, 864 (2005) [CrossRef] [Google Scholar]
  5. X. Guo, N. Zhou, S.J. Lou, et al., Polymer solar cells with enhanced fill factors, Nat. Photonics 7, 825 (2013) [CrossRef] [Google Scholar]
  6. F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem. 19, 5442 (2009) [CrossRef] [Google Scholar]
  7. F.C. Krebs, S.A. Gevorgyan, B. Gholamkhass, et al., A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules, Sol. Energy. Mater. Sol. Cells 93, 1968 (2009) [CrossRef] [Google Scholar]
  8. B.H. Johnson, E. Allagoa, R.L. Thomas, et al., Influence of functionalized fullerene structure on polymer photovoltaic degradation, Sol. Energy Mater. Sol. Cells 94, 537 (2010) [CrossRef] [Google Scholar]
  9. E.L. Sena, J.H. Peel, D. Wesenberg, et al., Transport and spectroscopic studies of the effects of fullerene structure on the efficiency and lifetime of polythiophene-based solar cells, Sol. Energy Mater. Sol. Cells 100, 192 (2012) [CrossRef] [Google Scholar]
  10. S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification, ACS Appl. Mater. Interfaces 1, 804 (2009) [CrossRef] [Google Scholar]
  11. S. Honda, H. Ohkita, H. Benten, S. Ito, Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells, Chem. Commun. Camb. Engl. 46, 6596 (2010) [CrossRef] [Google Scholar]
  12. S. Honda, H. Ohkita, H. Benten, S. Ito, Selective dye loading at the heterojunction in polymer/fullerene solar cells, Adv. Energy Mater. 1, 588 (2011) [CrossRef] [Google Scholar]
  13. G.D. Sharma, S.P. Singh, M.S. Roy, J.A. Mikroyannidis, Solution processed bulk heterojunction polymer solar cells with low band gap DPP-CN small molecule sensitizer, Org. Electron. 13, 1756 (2012) [CrossRef] [Google Scholar]
  14. J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, G.D. Sharma, A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells, Adv. Funct. Mater. 21, 746 (2011) [CrossRef] [Google Scholar]
  15. N. Cai, S.-J. Moon, L. Cevey-Ha, et al., An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells, Nano Lett. 11, 1452 (2011) [CrossRef] [PubMed] [Google Scholar]
  16. L. Sicot, C. Fiorini, A. Lorin, P. Raimond, C. Sentein, J.-M. Nunzi, Improvement of the photovoltaic properties of polythiophene-based cells, Sol. Energy Mater. Sol. Cells 63, 49 (2000) [CrossRef] [Google Scholar]
  17. C.R. Moylan, B.J. McNelis, L.C. Nathan, M.A. Marques, E.L. Hermstad, B.A. Brichler, Challenging the auxiliary donor effect on molecular hyperpolarizability in thiophene-containing non-linear chromophores: X-ray crystallographic and optical measurements on two new isomeric chromophores, J. Org. Chem. 69, 8239 (2004) [CrossRef] [PubMed] [Google Scholar]
  18. M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003) [CrossRef] [EDP Sciences] [Google Scholar]
  19. Y.-S. Yen, W.-T. Chen, C.-Y. Hsu, H.-H. Chou, J.T. Lin, M.-C.P. Yeh, Arylamine-based dyes for p-type dye-sensitized solar cells, Org. Lett. 13, 4930 (2011) [CrossRef] [PubMed] [Google Scholar]
  20. Y. Hong, J.-Y. Liao, D. Cao, et al., Organic dye bearing asymmetric double donor-π-acceptor chains for dye-sensitized solar cells, J. Org. Chem. 76, 8015 (2011) [CrossRef] [PubMed] [Google Scholar]
  21. F.-T. Kong, S.-Y. Dai, K.-J. Wang, Review of recent progress in dye-sensitized solar cells, Adv. Optoelectron. 2007, e75384 (2007) [Google Scholar]
  22. Z. Liu, H. Ojima, Z. Hong, J. Kido, W. Tian, X.-F. Wang, Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells, Mol. Basel. Switz. 18, 3107 (2013) [Google Scholar]
  23. Sigma-Aldrich, Disperse Red 1, product number 344206 (2016) http://www.sigmaaldrich.com/catalog/product/aldrich/344206?lang=en&region=US [Google Scholar]
  24. W.Y. Huang, P.T. Huang, Y.K. Han, C.C. Lee, T.L. Hsieh, M.Y. Chang, Aggregation and gelation effects on the performance of poly(3-hexylthiophene)/fullerene solar cells, Macromolecules 41, 7485 (2008) [CrossRef] [Google Scholar]
  25. H.N. Ghosh, A.V. Sapre, J.P. Mittal, Aggregation of C70 in solvent mixtures, J Phys. Chem. 100, 9439 (1996) [CrossRef] [Google Scholar]
  26. B. Watts, W.J. Belcher, L. Thomsen, H. Ade, P.C. Dastoor, A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films, Macromolecules 42, 8392 (2009) [CrossRef] [Google Scholar]
  27. M. Reyes-Reyes, K. Kim, D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6, 6)C61 blends, Appl. Phys. Lett. 87, 083506 (2005) [CrossRef] [Google Scholar]
  28. G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys. 98, 043704 (2005) [CrossRef] [Google Scholar]
  29. H. Hoppe, N.S. ariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem. 16, 45 (2006) [CrossRef] [Google Scholar]
  30. Q. Ying, J. Marecek, B. Chu, Slow aggregation of buckminsterfullerene (C60) in benzene solution, Chem. Phys. Lett. 219, 214 (1994) [CrossRef] [Google Scholar]
  31. R. Peng, J. Zhu, W. Pang, et al., Thermal annealing effects on the absorption and structural properties of regioregular poly(3-hexylthiophene) films, J. Macromol. Sci. Part B 50, 624 (2011) [CrossRef] [Google Scholar]
  32. X. Yang, J. Loos, Toward high-performance polymer solar cells: the importance of morphology control, Macromolecules 40, 1353 (2007) [CrossRef] [Google Scholar]
  33. I.E. Jacobs, F. Wang, Z.I.B. Valdez, A.N.A. Oviedo, D.J. Bilsky, A.J. Moulé, Photoinduced degradation from trace 1,8-diiodooctane in organic photovoltaics, J. Mater. Chem. C 6, 219 (2018) [CrossRef] [Google Scholar]
  34. E. Lewis, B. Mantha, R.P. Barber, Resistance and lifetime measurements of polymer solar cells using glycerol doped poly[3,4-ethylenedioxythiophene]: poly[styrenesulfonate] hole injection layers, EPJ Photovoltaics 5, 50402 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  35. N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, M.L. Chabinyc, Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend, Adv. Energy Mater. 1, 82 (2011) [CrossRef] [Google Scholar]
  36. E.L. Sena, J.H. Peel, D. Wesenberg, S. Nathan, M. Wallis, M.J. Giammona, T. Adalsteinsson, B.J. McNelis, R.P. Barber, Transport and spectroscopic studies of the effects of fullerene structure on the efficiency and lifetime of polythiophene-based solar cells, Sol. Energy Mater. Sol. Cells 100, 192 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.