Issue |
EPJ Photovolt.
Volume 13, 2022
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 9 | |
Section | Semiconductor Thin Films | |
DOI | https://doi.org/10.1051/epjpv/2022023 | |
Published online | 06 December 2022 |
https://doi.org/10.1051/epjpv/2022023
Regular Article
Exploring reverse-bias characteristics of CIGS solar cells: impact of alkali-post-deposition treatment and CdS buffer layer
1
Ultrafast Nanoscale Dynamics, Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany
2
NICE Solar Energy GmbH, Alfred-Leikam-Str. 25, 74523 Schwäbisch Hall, Germany
* e-mail: Stephan.Heise@uni-oldenburg.de
Received:
14
July
2022
Received in final form:
10
October
2022
Accepted:
20
October
2022
Published online: 6 December 2022
The characteristics of solar cells in the reverse voltage direction are essential for the resilience of a photovoltaic module against partial-shading induced damage. Therefore, it is important to establish a thorough understanding of the mechanisms that lead to reverse breakdown in solar cells. This work studies thin-film solar cells based on Cu(In,Ga)Se2 (CIGS) absorber layers. Systematic material variations are investigated in order to learn more about the mechanisms governing reverse breakdown in these devices. To this end, devices with different thicknesses of the CdS buffer layer and with and without a RbF-post-deposition treatment (PDT) of the absorber layer were fabricated. The resulting current-voltage characteristics at negative voltage biases reveal that devices break down at much more negative voltages if they underwent a PDT, if the buffer layer thickness is increased, or if the buffer layer is not photoexcited. This implies that possibly a PDT may be disadvantageous for the shading tolerance of a module. The further analysis indicates that several mechanisms are involved in the reverse breakdown. Whereas tunneling currents in the buffer layer seem to play a major role for the actual breakdown, the strong effect of the PDT is probably caused by a reduction of shunt leakage currents along grain boundaries which lowers material heating.
Key words: Reverse breakdown / partial shading / post-deposition treatment / buffer layer / shunt leakage currents
© J. Neerken et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.