Issue |
EPJ Photovolt.
Volume 11, 2020
Disordered Semiconductors and Photovoltaic Applications
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/epjpv/2019011 | |
Published online | 04 February 2020 |
https://doi.org/10.1051/epjpv/2019011
Regular Article
Nanomolded buried light-scattering (BLiS) back-reflectors using dielectric nanoparticles for light harvesting in thin-film silicon solar cells
1
Department of Physics and I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
2
IMM-Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
3
Department of Physics and Astronomy − iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
4
Department of Physics, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
* e-mail: sanjayk.ram@gmail.com
Received:
1
October
2019
Received in final form:
19
November
2019
Accepted:
17
December
2019
Published online: 4 February 2020
The article presents a nanoparticle-based buried light-scattering (BLiS) back-reflector design realized through a simplified nanofabrication technique for the purpose of light-management in solar cells. The BLiS structure consists of a flat silver back-reflector with an overlying light-scattering bilayer which is made of a TiO2 dielectric nanoparticles layer with micron-sized inverted pyramidal cavities, buried under a flat-topped silicon nanoparticles layer. The optical properties of this BLiS back-reflector show high broadband and wide angular distribution of diffuse light-scattering. The efficient light-scattering by the buried inverted pyramid back-reflector is shown to effectively improve the short-circuit-current density and efficiency of the overlying n-i-p amorphous silicon solar cells up to 14% and 17.5%, respectively, compared to the reference flat solar cells. A layer of TiO2 nanoparticles with exposed inverted pyramid microstructures shows equivalent light scattering but poor fill factors in the solar cells, indicating that the overlying smooth growth interface in the BLiS back-reflector helps to maintain a good fill factor. The study demonstrates the advantage of spatial separation of the light-trapping and the semiconductor growth layers in the photovoltaic back-reflector without sacrificing the optical benefit.
Key words: inverted pyramids / light management / photovoltaics / thin-film solar cells / nanoparticles / nanomolding
© D. Desta et al., published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.