Issue |
EPJ Photovolt.
Volume 7, 2016
|
|
---|---|---|
Article Number | 70501 | |
Number of page(s) | 7 | |
Section | High Efficiency Materials and Devices - New concepts | |
DOI | https://doi.org/10.1051/epjpv/2015009 | |
Published online | 13 January 2016 |
https://doi.org/10.1051/epjpv/2015009
Porous (001)-faceted anatase TiO2 nanorice thin film for efficient dye-sensitized solar cell
Institute of Microengineering and Nanoelectronics,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
a
e-mail: akrajas@ukm.edu.my
Received:
14
September
2015
Accepted:
19
November
2015
Published online:
13
January
2016
Anatase TiO2 structures with nanorice-like morphology and high exposure of (001) facet has been successfully synthesized on an ITO surface using ammonium Hexafluoro Titanate and Hexamethylenetetramine as precursor and capping agent, respectively, under a microwave-assisted liquid-phase deposition method. These anatase TiO2 nanoparticles were prepared within five minutes of reaction time by utilizing an inverter microwave system at a normal atmospheric pressure. The morphology and the size (approximately from 6 to 70 nm) of these nanostructures can be controlled. Homogenous, porous, 5.64 ± 0.002 μm thick layer of spongy-nanorice with facets (101) and (001) was grown on ITO substrate and used as a photo-anode in a dye-sensitized solar cell (DSSC). This solar cell device has emerged out with 4.05 ± 0.10% power conversion efficiency (PCE) and 72% of incident photon-to-current efficiency (IPCE) under AM1.5 G illumination.
© Ali Shah et al., published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is
properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.